Let us see if the superposition principle still applies in this nonlinear case. Considering the previous graph, an input of 2 produces an output of 4, and an input of 4 produces an output of 16. If the superposition principle applies then an input of 2+4 (which is 6) should produce an output of 4+16 (which is 20). But, from the graph, we can see that is not the case: an input of 6 produces an output of 36 — not 20. So, crucially, the superposition principle does not apply to nonlinear components.
"If input A produces response X and input B produces response Y then input (A + B) produces response (X + Y)." Aquí tenemos 2 (A), que produce 4, y 4 (B) que produce 16. Por lo tanto, si aplicara la superposición (A + B) tendríamos que 2 + 4 = 6, y en seguida (X + Y) sería igual a 4 + 16 = 20. Pero no es este el caso, pues 6 no produce 20 sino 36.

