More on this book
Community
Kindle Notes & Highlights
It sometimes seems as though every force of nature, every flaw in the human character, and every biological organism on the planet is engaged in a competition to see which can sever the most cables. The Museum of Submarine Telegraphy in Porthcurno, England, has a display of wrecked cables bracketed to a slab of wood. Each is labeled with its cause of failure, some of which sound dramatic, some cryptic, some both: trawler maul, spewed core, intermittent disconnection, strained core, teredo worms, crab’s nest, perished core, fish bite, even “spliced by Italians.” The teredo worm is like a
...more
This highlight has been truncated due to consecutive passage length restrictions.
In 1870, a new cable was laid between England and France, and Napoleon III used it to send a congratulatory message to Queen Victoria. Hours later, a French fisherman hauled the cable up into his boat, identified it as either the tail of a sea monster or a new species of gold-bearing seaweed, and cut off a chunk to take home. Thus was inaugurated an almost incredibly hostile relationship between the cable industry and fishermen. Almost anyone in the cable business will be glad, even eager, to tell you that since 1870 the intelligence and civic responsibility of fisherman have only degraded.
...more
Mere impact can be enough to wreck a cable, if it puts a leak in the insulation. Frequently, though, a net or anchor will snag a cable. If the ship is small and the cable is big, the cable may survive the encounter. There is a type of cable, used up until the advent of optical fiber, called 21-quad, which consists of 21 four-bundle pairs of cable and a coaxial line. It is 15 centimeters in diameter, and a single meter of it weighs 46 kilograms. If a passing ship should happen to catch such a cable with its anchor, it will follow a very simple procedure: abandon it and go buy a new anchor. But
...more
This highlight has been truncated due to consecutive passage length restrictions.
“Cutting a submarine cable,” Barnes says, “is like starting a nuclear war. It’s easy to do, the results are devastating, and as soon as one country does it, all of the others will retaliate. “Bert Porter, a Cable & Wireless cable-laying veteran who is now a freelancer, was beachmaster for the Tong Fuk lay. He was on a ship that laid a cable from Hong Kong to Singapore during the late 1960s. Along the way they passed south of Lan Tao Island, and so the view from Tong Fuk Beach is a trip down memory lane for him. “The repeater spacing was about 18 miles,” he says, “and so the first repeater went
...more
As the capacity of optical fibers climbs, so does the economic damage caused when the cable is severed. FLAG makes its money by selling capacity to long-distance carriers, who turn around and resell it to end users at rates that are increasingly determined by what the market will bear. If FLAG gets chopped, no calls get through. The carriers’ phone calls get routed to FLAG’s competitors (other cables or satellites), and FLAG loses the revenue represented by those calls until the cable is repaired. The amount of revenue it loses is a function of how many calls the cable is physically capable of
...more
Clearly, submarine cable repair is a good business to be in. Cable repair ships are standing by in ports all over the world, on 24-hour call, waiting for a break to happen somewhere in their neighborhood. They are called agreement ships. Sometimes, when nothing else is going on, they will go out and pull up old abandoned cables. The stated reason for this is that the old cables present a hazard to other ships. However, if you do so much as raise an eyebrow at this explanation, any cable man will be happy to tell you the real reason: whenever a fisherman snags his net on anything — a rock, a
...more
This highlight has been truncated due to consecutive passage length restrictions.
Eratosthenes, who was the first person to calculate the circumference of the earth, by looking at the way the sun shone down wells at Alexandria and Aswøan. He also ran the library for a while and took the job seriously enough that when he started to go blind in his old age, he starved himself to death. In any event, this library was burned out by the Romans when they were adding Egypt to their empire. Or maybe it wasn’t. It’s inherently difficult to get reliable information about an event that consisted of the destruction of all recorded information.
Charitably, Engineer Musalam takes the view that the completion of the Aswøan High Dam tamed the Nile’s current to the point where no one need worry about running cables to Port Said anymore. FLAG’s surveyors obviously agree with him, because they chose Port Said as one of their landing points. On the other hand, FLAG’s archenemy, SEA-ME-WE 3, will land only at Alexandria, because France Telecom’s engineers refuse to lay cable across the Nile. SEA-ME-WE 3’s redundant routes will run, instead, along the Desert Road and the Agricultural Road. Bandwidth buyers trying to choose between the two
...more
That’s right — in a nicely Pharaonic touch, one of the six ducts going into the ground here is the sole property of President Hosni Mubarak, or (presumably) whoever succeeds him as head of state. It is hard to envision why a head of state would want or need his own private tube full of air running underneath the Sahara. The obvious guess is that the duct might be used to create a secure communications system, independent of the civilian and military systems (the Egyptian military will own one of the six ducts, and ARENTO will own three). This, in and of itself, says something about the
...more
Inside the city, where ten rather than six ducts are being prepared, they must occasionally sprout up out of the ground and run along the undersides of bridges and flyovers. In these sections it is easy to identify FLAG’s duct because, unlike the others, it is galvanized steel instead of PVC. FLAG undoubtedly specified steel for its far greater protective value, but in so doing posed a challenge for Engineer Musalam, who knew that thieves would attack the system wherever they could reach it — not to take the cable but to get their hands on that tempting steel pipe. So, wherever the undersides
...more
He was here because one of the crews working on FLAG had, while enlarging a manhole excavation, plunged the blade of their backhoe right through the main communications cable connecting Egypt to Libya — a 960-circuit coaxial line buried, sans conduit, in the same median. Libya had dropped off the net for a while until Mu’ammar Gadhafi’s eastbound traffic could be shunted to a microwave relay chain and an ARENTO repair crew had been mobilized. The quality of such an operation is not measured by how frequently cables get broken (usually they are broken by other people) but by how quickly they
...more
During the previous month, in mid-June, SEA-ME-WE 2 had been cut twice between Djibouti and India. Two cable ships, Restorer and Enterprise, had been sent to fix the breaks. But fire had broken out in the engine room of the Enterprise (maybe a problem with the dilithium crystals), putting it into repairs for four weeks. So Restorer had to fix both breaks. But because of bad weather, only one of the faults had been repaired as of July 26. In the meantime, all of SEA-ME-WE 2’s traffic had been shunted to a satellite link reserved as a backup. Satellite links have enough bandwidth to fill in for
...more
As little slack as possible is employed, partly because cable costs a lot of money (for the FLAG cable, $16,000 to $28,000 per kilometer, depending on the amount of armoring) and partly because loose coils are just asking for trouble from trawlers and other hazards. In fact, there is so little slack (in the layperson’s sense of the word) in a well-laid cable that it cannot be grappled and hauled to the surface without snapping it.
But now the cable has way too much slack. It can’t just be dumped overboard, because it would form an untidy heap on the bottom, easily snagged. Worse, its precise location would not be known, which is suicide from a legal point of view. As long as a cable’s position is precisely known and marked on charts, avoiding it is the responsibility of every mariner who comes that way. If it’s out of place, any snags are the responsibility of the cable’s owners.
The answer has to do with slack control. And most of what is known about slack control is known by Cable & Wireless Marine. AT&T presumably knows about slack control too, but Cable & Wireless Marine has twice as many ships and dominates the deep-sea cable-laying industry. The Japanese can lay cable in shallow water and can repair it anywhere. But the reality is that when you want to slam a few thousand kilometers of state-of-the-art optical fiber across a major ocean, you call Cable & Wireless Marine, based in England. That is pretty much what FLAG did several years ago.
By the year 1870, Kelvin and others had finally worked the bugs out of the technology. A three-master anchored off this beach in that year and landed a cable that eventually ran to Lisbon, Gibraltar, Malta, Alexandria, Cairo, Suez, Aden (now part of Yemen), Bombay, over land to the east coast of India, then on to Penang, Malacca, Singapore, Batavia (later Jakarta), and finally to Darwin, Australia. It was Australia’s first direct link to Great Britain and, hardly by coincidence, also connected every British outpost of importance in between. It was the spinal cord of the Empire.
Many of the features that made Cornwall attractive to cable operators also made it a suitable place to conduct transatlantic radio experiments, and so in 1900 Guglielmo Marconi himself established a laboratory on Lizard Point, which is directly across the bay from Porthcurno, some 30 kilometers distant. Marconi had another station on the Isle of Wight, a few hundred kilometers to the east, and when he succeeded in sending messages between the two, he constructed a more powerful transmitter at the Lizard station and began trying to send messages to a receiver in Newfoundland. The competitive
...more
After Kelvin’s mirror galvanometer became standard equipment throughout the wired world, every message coming down the cables had to pass, briefly, through the minds of human operators such as the ones who were schooled at the Porthcurno campus. These were highly trained young men in slicked hair and starched collars, working in teams of two or three: one to watch the moving spot of light and divine the letters, a second to write them down, and, if the message were being relayed down another cable, a third to key it in again. It was clear from the very beginning that this was an error-prone
...more
This highlight has been truncated due to consecutive passage length restrictions.
The regenerated signal goes down the table (or down another submarine cable) to a machine that records the message as a pattern of holes punched in tape. It also goes to a direct printer that hammers out the words of the message in capital letters on another moving strip of paper. The final step is a gummer that spreads stickum on the back of the tape so that it may be stuck onto a telegraph form. (They tried to use pregummed tape, but in the tropics it only coated the machinery with glue.)
To lay a cable competently you must have a detailed survey of a corridor surrounding the intended route. In shallow water, you have relatively precise control over where the cable ends up, but the bottom can be very irregular, and the cable is likely to be buried into the seabed. So you want a narrow (1 kilometer wide) corridor with high resolution. In deeper water, you have less lateral control over the descending cable, but at the same time the phenomena you’re looking at are bigger, so you want a survey corridor whose width is 2 to 3 times the ocean depth but with a coarser resolution. A
...more
This highlight has been truncated due to consecutive passage length restrictions.
The Internet poses another problem for telcos by being asymmetrical. Imagine you are running an international telecom company in Japan. Everything you’ve ever done, since TPC-1 came into Ninomiya in ‘64, has been predicated on circuits. Circuits are the basic unit you buy and sell — they are to you what cars are to a Cadillac dealership. A circuit, by definition, is symmetrical. It consists of an equal amount of bandwidth in each direction — since most phone conversations, on average, entail both parties talking about the same amount. A circuit between Japan and the United States is something
...more
Because the Web is asymmetrical. All of your Japanese Web customers are using it to access sites in the States, because that’s where all the sites are located. When one of them clicks on a button on an American Web page, a request is sent over the cable to the US. The request is infinitesimal, just a few bytes. The site in the States promptly responds by trying to send back a high-resolution, 24-bit color image of Cindy Crawford, or an MPEG film of a space shuttle mission. Millions of bytes. Your pipe gets jammed solid with incoming packets. You’re a businessperson. You want to make your
...more
John Mercogliano, if this is conceivable, logs even more frequent-flier miles, to even more parts of the planet, than the cable layers we met on Lan Tao Island. He lives in London, his office is in Amsterdam, his territory is Europe, he works for a company headquartered in Bermuda that has many ties to the New York metropolitan area and that does business everywhere from Porthcurno to Miura. He is trim, young-looking, and vigorous, but even so the schedule occasionally takes its toll on him, and he feels the need to just get away from his job for a few days and think about something — anything
...more
As Kelvin figured out the hard way, whenever you are reeling in a long line, you must first relieve all tension on it or else your reel will be crushed. The same problem is posed in reverse by the cable-laying process, where thousands of meters of cable, weighing many tons, may be stretched tight between the ship and the contact point on the seafloor, but the rest of the cable stored on board the ship must be coiled loosely in the tanks with no tension on them at all. In both cases, the cable must be perfectly slack on the ship end and very tight on the watery end of the winching machinery.
...more
This highlight has been truncated due to consecutive passage length restrictions.
It is important to remember, though, that companies like Cable & Wireless and Nynex are not really heroic antimonopolists. A victory for FLAG doesn’t lead to a pat ending like in Star Wars — it does not get us into an idealized free market. “One thing to bear in mind is that Cable & Wireless is a club and they are rigorously anticompetitive wherever they have the opportunity,” said Doug Barnes, the Cypherpunk. “Nynex and the other Baby Bells are self-righteously trying to crack open other companies’ monopolies while simultaneously trying to hold onto their domestic ones. The FLAG folks are
...more
Yet little attention has been paid to the historical antecedents of the Internet — perhaps partly because these cable technologies are much older and less accessible and partly because many Net people want so badly to believe that the Net is fundamentally new and unique. Analog is seen as old and bad, and so many people assume that the communications systems of old were strictly analog and have just now been upgraded to digital. This overlooks much history and totally misconstrues the technology. The first cables carried telegraphy, which is as purely digital as anything that goes on inside
...more
There is a particular science fiction approach to the world, and it has nothing to do with the future. It doesn’t have to be in the future at all. I used to read anthologies of science fiction stories when I was a kid — there’d be ten stories about rocket ships and ray guns, and then there’d be some strange Robert Bloch story set in some town in the 1950s that had no science, no traditional SF content, but it was clearly science fiction. It had that SF approach: an awareness that things could have been different, that this is one of many possible worlds; that if you came to this world from
...more