The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos
Rate it:
0%
Flag icon
Swhirsch
2017-10-08
2%
Flag icon
After decades of closely studying quantum mechanics, and after having accumulated a wealth of data confirming its probabilistic predictions, no one has been able to explain why only one of the many possible outcomes in any given situation actually happens. When we do experiments, when we examine the world, we all agree that we encounter a single definite reality. Yet, more than a century after the quantum revolution began, there is no consensus among the world’s physicists as to how this basic fact is compatible with the theory’s mathematical expression.
2%
Flag icon
Yet each such road—each reality—is hidden from all others.
3%
Flag icon
Chapter 9 takes us yet further into quantum reality, leading to what I consider the strangest version of all parallel universe proposals. It’s a proposal that emerged gradually over thirty years of theoretical studies on the quantum properties of black holes. The work culminated in the last decade, with a stunning result from string theory, and it suggests, remarkably, that all we experience is nothing but a holographic projection of processes taking place on some distant surface that surrounds us. You can pinch yourself, and what you feel will be real, but it mirrors a parallel process taking ...more
4%
Flag icon
In his Principia, published in 1687, Newton recognized the importance of this question but acknowledged that his own law was disturbingly silent about the answer. Newton was certain that there had to be something communicating gravity from place to place, but he was unable to identify what that something might be. In the Principia he gibingly left the question “to the consideration of the reader,” and for more than two hundred years, those who read this challenge simply read on. That’s something Einstein couldn’t do.
4%
Flag icon
For the better part of a decade, Einstein was consumed with finding the mechanism underlying gravity; in 1915, he proposed an answer. Although grounded in sophisticated mathematics and requiring conceptual leaps unheralded in the history of physics, Einstein’s proposal had the same air of simplicity as the question it purported to address. By what process does gravity exert its influence across empty space? The emptiness of empty space seemingly left everyone empty-handed. But, actually, there is something in empty space: space. This led Einstein to suggest that space itself might be gravity’s ...more
4%
Flag icon
After Einstein, gravity was recognized as a distortion of the environment caused by one object and guiding the motion of others.
4%
Flag icon
The global positioning system you casually access from your smartphone communicates with satellites whose internal timing devices routinely take account of the spacetime curvature they experience from their orbit above earth. If the satellites failed to do so, the position readings they generate would rapidly become inaccurate. What in 1916 was a set of abstract mathematical equations that Einstein offered as a new description of space, time, and gravity is now routinely called upon by devices that fit in our pockets.
5%
Flag icon
so happily, from Einstein’s perspective, when he studied this equation he found something unexpected and, to him, unpalatable. The prevailing scientific and philosophical stance was not only that on the largest of scales the universe was uniform, but that it was also unchanging. Much like the rapid molecular motions in your tea average out to a liquid whose appearance is static, astronomical motion such as the planets orbiting the sun and the sun moving around the galaxy would average out to an overall unchanging cosmos. Einstein, who adhered to this cosmic perspective, found to his dismay ...more
5%
Flag icon
Einstein recoiled. According to the math of general relativity, the universe on the grandest of scales would be changing, because its very substrate—space itself—would be changing. The eternal and static cosmos that Einstein expected would emerge from his equations was simply not there. He had initiated the science of cosmology, but he was deeply distressed by where the math had taken him.
7%
Flag icon
The expansion of space found mathematically by Friedmann and Lemaître applies verbatim to a universe that has any one of these shapes. For positive curvature, use the two-dimensional mental imagery to think of a balloon’s surface expanding as it is filled with air. For zero curvature, think of a flat sheet of rubber that is being stretched uniformly in all directions. For negative curvature, mold that rubber sheet into the shape of a Pringles chip and then carry on with the stretching. If galaxies are modeled as glitter evenly sprinkled on any of these surfaces, the expansion of space results ...more
7%
Flag icon
Current data thus favor an ever-expanding universe shaped like the three-dimensional version of the infinite tabletop or of the finite video-game screen.
7%
Flag icon
And for either a finite or an infinite universe, state-of-the-art analyses now peg that moment at about 13.7 billion years ago.
8%
Flag icon
From Einstein’s special relativity, we know that no signal, no disturbance, no information, no anything can travel faster than light—which means that regions of the universe so far apart that light hasn’t had time to travel between them are regions that have never exchanged any influence of any kind, and so have evolved completely independently.
9%
Flag icon
The conclusion, though, is that anything but measurements with perfect resolution reduces the number of possibilities from infinite to finite.
9%
Flag icon
Classical physics makes clear that perfect resolution is unattainable in practice. Quantum physics goes further and establishes that perfect resolution is unattainable in principle.
11%
Flag icon
the primordial plasma would have appeared opaque; the photons, incessantly buffeted by electrons and protons, would have provided a diffuse glow similar to a car’s high beams cloaked by a dense fog.
11%
Flag icon
But when the temperature dropped below 3000 K, the rapidly moving electrons and nuclei slowed sufficiently to amalgamate into atoms; electrons were captured by the atomic nuclei and drawn into orbit. This was a key transformation. Because protons and electrons have equal but opposite charges, their atomic unions are electrically neutral. And since a plasma of electrically neutral composites allows photons to slip through like a hot knife through butter, the formation of atoms allowed the cosmic fog to clear and the luminous echo of the big bang to be released. The primordial photons have been ...more
11%
Flag icon
As Gamow first realized and as Alpher and his collaborator Robert Herman worked out with greater fidelity, all this means that if the big bang theory is correct, then space everywhere should now be filled with remnant photons from the creation event, streaming every which
11%
Flag icon
way, whose vibrational frequencies are determined by how much the universe has expanded and cooled during the billions of years since they were released. Detailed mathematical calculations showed that the photons should have cooled close to absolute zero, placing their frequencies in the microwave part of the spectrum. For this reason, they are called the cosmic microwave background radiation.
11%
Flag icon
But before the Princeton researchers could put their plan to the test, they received one of the most famous telephone calls in the history of science.
12%
Flag icon
The two groups agreed to publish their papers simultaneously in the prestigious Astrophysical Journal. The Princeton group discussed their theory of the background radiation’s cosmological origin, while the Bell Labs team reported, in the most conservative of language and with no mention of cosmology, the detection of uniform microwave radiation permeating space. Neither paper mentioned the earlier work of Gamow, Alpher, and Herman. For their discovery, Penzias and Wilson were awarded the 1978 Nobel Prize in physics.
12%
Flag icon
Gamow, Alpher, and Herman were deeply dismayed, and in the years that followed struggled mightily to have their work recognized.
12%
Flag icon
Only gradually and belatedly has the physics community saluted their primary role in ...
This highlight has been truncated due to consecutive passage length restrictions.
12%
Flag icon
When we examine the cosmic microwave background photons, we are glimpsing how things were nearly 14 billion years ago.
12%
Flag icon
It’s a curious thought. The very same airwaves that carry reruns of All in the Family and The Honeymooners are infused with some of the universe’s oldest fossils, photons communicating a drama that played out when the cosmos was but a few hundred thousand years old.
12%
Flag icon
The big bang model’s correct prediction that space would be filled with microwave background radiation was a triumph. During a mere three hundred years of scientific thought and technological progress, our species went from peering through rudimentary telescopes and dropping balls from leaning towers to grasping physical processes at work just after the universe was born. Nevertheless, further investigation of the data raised a pointed challenge. Ever more refined measurements of the radiation’s temperature, made not with television sets but with some of the most precise astronomical equipment ...more
12%
Flag icon
But the radiation’s astounding uniformity shines a glaring spotlight on the cosmological principle itself. Reasonable though the cosmological principle may sound, what mechanism established the cosmos-wide uniformity that observations confirm?
12%
Flag icon
thermos is designed to prevent such interactions, thwarting the drive to uniformity and preserving temperature differences.
12%
Flag icon
And the thing is, relativity places no limit on how fast space can swell, so there is no limit on how fast galaxies that are being pushed apart by the swell recede from one another. The rate of recession between any two galaxies can exceed any speed, including the speed of light.
12%
Flag icon
Indeed, the mathematics of general relativity shows that in the universe’s earliest moments, space would have swelled so fast that regions would have been propelled apart at greater than light speed.
14%
Flag icon
To see why a uniform field yields negative pressure, think first about a more ordinary situation that involves positive pressure: the opening of a bottle of Dom Pérignon. As you slowly remove the cork, you can feel the positive pressure of the champagne’s carbon dioxide pushing outward, driving the cork from the bottle and into your hand. A fact you can directly verify is that this outward exertion drains a little energy from the champagne. You know those vapor tendrils you see near the bottle’s neck when the cork is out? They form because the energy expended by the champagne in pushing ...more
15%
Flag icon
Precise details depend on factors that neither theory nor observation has as yet determined (the initial value of the inflaton field, the exact shape of the potential energy slope, and so on)5 but in typical versions the mathematical calculations show that the inflaton’s energy would roll down the slope in a tiny fraction of a second, on the order of 10–35 seconds. And yet, during that brief span, space would expand by a colossal factor, perhaps 1030 if not more. These numbers are so extreme that they defy analogy. They imply that a region of space the size of a pea would be stretched larger ...more
Swhirsch
This is just fucking incredible!
16%
Flag icon
To eradicate the threat, you need to wipe out the virus faster than it can reproduce. The inflationary virus “reproduces”—a high field value generates rapid spatial expansion and thus infuses a yet larger domain with that same high field value—and it does so faster than the competing process eliminates it. The inflationary virus effectively resists eradication.
Swhirsch
Important footnote
16%
Flag icon
There are versions of the inflationary theory in which inflation is not eternal. By fiddling with details such as the number of inflaton fields and their potential energy curves, clever theorists can arrange things so that the inflaton would, in due course, be knocked off its perch everywhere. But these proposals are the exception rather than the rule. Garden-variety inflationary models yield a gargantuan number of bubble universes carved into an eternally expanding spatial expanse. And so, if the inflationary theory is on the mark, and if, as many theoretical investigations conclude, its ...more
17%
Flag icon
In an Inflationary Multiverse, the member universes are sharply divided. Each is a hole in the cosmic cheese, separated from the others by domains in which the inflaton’s value remains high. Since such intervening regions are still undergoing inflationary expansion, the bubble universes are rapidly driven apart, with a speed of recession proportional to the amount of swelling space between them. The farther apart they are, the greater the expansion’s speed; the ultimate result is that distant bubbles move apart faster than the speed of light. Even with unlimited longevity and technology, ...more
17%
Flag icon
Such human-induced changes are hypothetical, because the energy required to substantially modify a Higgs field’s value in even a small region of space is enormously beyond what we can muster. (The changes are also hypothetical because the existence of the Higgs fields is still up in the air. Theorists eagerly anticipate highly energetic collisions between protons at the Large Hadron Collider chipping off small chunks of the Higgs field—Higgs particles—that may be detected in the coming years.) But in many versions of inflationary cosmology, a Higgs field would naturally have different values ...more
18%
Flag icon
But theoretical physicists have explored more complicated scenarios involving multiple Higgs fields (we will shortly see that such possibilities naturally emerge from string theory), which translate into an even richer set of distinct bubble universes.
18%
Flag icon
Permeated by such unfamiliar values of various Higgs fields, these universes would differ from ours considerably, as schematically illustrated in Figure 3.7. This would make a journey through the Inflationary
18%
Flag icon
Multiverse a perilous undertaking. Many of the other universes would not be places you’d want high on your itinerary, because the conditions would be incompatible with the biological processes essential to survival, giving new meaning to the saying that there’s no place like home. In the Inflationary Multiverse, our universe could well be an island oasis in a gigantic but largely inhospitable cosmic archipelago.
19%
Flag icon
The best available cosmological theory for explaining the best available cosmological data leads us to think of ourselves as occupying one of a vast inflationary system of parallel universes, each of which harbors its own vast collection of quilted parallel universes. Cutting-edge research yields a cosmos in which there are not only parallel universes but parallel parallel universes. It suggests that reality is not only expansive but abundantly expansive.
20%
Flag icon
Our confidence in quantum field theory comes from one essential fact: there is not a single experimental result that counters its predictions. To the contrary, data confirm that the equations of quantum field theory describe the behavior of particles with astounding accuracy. The most impressive example comes from the quantum field theory of the electromagnetic force, quantum electrodynamics. Using it, physicists have undertaken detailed calculations of the electron’s magnetic properties. The calculations are not easy, and the most refined versions have taken decades to complete. But they’ve ...more
21%
Flag icon
Whenever the equations of general relativity commingled with those of quantum theory, the mathematics balked. Use the combined equations to calculate the quantum probability of some physical process—such as the chance of two electrons ricocheting off each other, given both their electromagnetic repulsion and their gravitational attraction—and you’d typically get the answer infinity. While some things in the universe can be infinite, such as the extent of space and the quantity of matter that may fill it, probabilities are not among them. By definition, the value of a probability must be ...more
21%
Flag icon
To get a feel for why, imagine you’re the landlord of an old house in San Francisco. If you have tenants who throw raucous parties, it might take effort to deal with the situation, but you don’t worry that the festivities will compromise the building’s structural integrity. However, if there’s an earthquake, you’re facing something far more serious. The fluctuations of the three nongravitational forces—fields that are tenants within the house of spacetime—are like the building’s incessant partyers. It took a generation of theoretical physicists to grapple with their raucous jitters, but by the ...more
21%
Flag icon
are qualitatively different. They’re more like an earthquake. Because the gravitational field is woven within the very fabric of spacetime, its quantum jitters shake the entire structure through and through. When used to analyze such pervasive quantum jitters, the mathematical methods collapsed.
21%
Flag icon
For years, physicists turned a blind eye to this problem because it surfaces only under the most extreme conditions. Gravity makes its mark when things are very massive, quantum mechanics when things are very small. And rare is the realm that is both small and massive, so that to describe it you must invoke both quantum mechanics and general relativity. Yet, there are such realms. When gravity and quantum mechanics are together brought to bear on either the big bang or black holes, realms that do involve extremes of enormous mass squeezed to small size, the math falls apart at a critical point ...more
21%
Flag icon
The Planck length, where gravity and quantum mechanics confront each other, is some 100 billion billion times smaller than any domain that’s been explored experimentally. Reading across the chart, each of the equally spaced tick marks represents a decrease in size by a factor of 1,000; this allows the chart to fit on a page but visually downplays the huge range of scales. For a better feel, note that if an atom were magnified to be as large as the observable universe, the same magnification would make the Planck length the size of an average tree.
21%
Flag icon
In fact, the theory encourages us to think of a vibrating string not merely as dictating the properties of its host particle but rather as being the particle. Because of the string’s infinitesimal size, on the order of the Planck length—10–33 centimeters—even today’s most refined experiments cannot resolve the string’s extended structure. The Large Hadron Collider, which slams particles together with energies just beyond 10 trillion times that embodied by a single proton at rest, can probe to scales of about 10–19 centimeters; that’s a millionth of a billionth the width of a strand of hair, ...more
22%
Flag icon
Undeniably, the Standard Model is tremendously successful, but many physicists feel that a truly fundamental understanding would not require such an ungainly assortment of ingredients.
22%
Flag icon
I’d love to explain in purely nontechnical terms how this comes about, but I can’t, and I’ve never encountered anyone who can. I made an attempt in The Elegant Universe, but that treatment only describes, in general terms, how the number of dimensions affects aspects of string vibrations, and doesn’t explain where the specific number ten comes from. So, in one slightly technical line, here’s the mathematical skinny. There’s an equation in string theory that has a contribution of the form (D — 10) times (Trouble), where D represents the number of spacetime dimensions and Trouble is a ...more
« Prev 1 3 4