Chaos: Making a New Science
Rate it:
Open Preview
Started reading December 28, 2024
1%
Flag icon
WHERE CHAOS BEGINS, classical science stops. For as long as the world has had physicists inquiring into the laws of nature, it has suffered a special ignorance about disorder in the atmosphere, in the turbulent sea, in the fluctuations of wildlife populations, in the oscillations of the heart and the brain. The irregular side of nature, the discontinuous and erratic side—these have been puzzles to science, or worse, monstrosities. But in the 1970s a few scientists in the United States and Europe began to find a way through disorder. They were mathematicians, physicists, biologists, chemists, ...more
2%
Flag icon
The new science has spawned its own language, an elegant shop talk of fractals and bifurcations, intermittencies and periodicities, folded-towel diffeomorphisms and smooth noodle maps. These are the new elements of motion, just as, in traditional physics, quarks and gluons are the new elements of matter. To some physicists chaos is a science of process rather than state, of becoming rather than being.
2%
Flag icon
The most passionate advocates of the new science go so far as to say that twentieth-century science will be remembered for just three things: relativity, quantum mechanics, and chaos. Chaos, they contend, has become the century’s third great revolution in the physical sciences. Like the first two revolutions, chaos cuts away at the tenets of Newton’s physics. As one physicist put it: “Relativity eliminated the Newtonian illusion of absolute space and time; quantum theory eliminated the Newtonian dream of a controllable measurement process; and chaos eliminates the Laplacian fantasy of ...more
2%
Flag icon
The physics described by Hawking could complete its mission without answering some of the most fundamental questions about nature. How does life begin? What is turbulence? Above all, in a universe ruled by entropy, drawing inexorably toward greater and greater disorder, how does order arise? At the same time, objects of everyday experience like fluids and mechanical systems came to seem so basic and so ordinary that physicists had a natural tendency to assume they were well understood. It was not so.
3%
Flag icon
Traditionally, when physicists saw complex results, they looked for complex causes. When they saw a random relationship between what goes into a system and what comes out, they assumed that they would have to build randomness into any realistic theory, by artificially adding noise or error. The modern study of chaos began with the creeping realization in the 1960s that quite simple mathematical equations could model systems every bit as violent as a waterfall. Tiny differences in input could quickly become overwhelming differences in output—a phenomenon given the name “sensitive dependence on ...more
3%
Flag icon
When the explorers of chaos began to think back on the genealogy of their new science, they found many intellectual trails from the past. But one stood out clearly. For the young physicists and mathematicians leading the revolution, a starting point was the Butterfly Effect.
3%
Flag icon
simulation of the earth’s atmosphere and oceans. Yet Lorenz created a toy weather in 1960 that succeeded in mesmerizing his colleagues. Every minute the machine marked the passing of a day by printing a row of numbers across a page. If you knew how to read the printouts, you would see a prevailing westerly wind swing now to the north, now to the south, now back to the north. Digitized cyclones spun slowly around an idealized globe. As word spread through the department, the other meteorologists would gather around with the graduate students, making bets on what Lorenz’s weather would do next. ...more
3%
Flag icon
Astronomers did not achieve perfection and never would, not in a solar system tugged by the gravities of nine planets, scores of moons and thousands of asteroids, but calculations of planetary motion were so accurate that people forgot they were forecasts. When an astronomer said, “Comet Halley will be back this way in seventy-six years,” it seemed like fact, not prophecy. Deterministic numerical forecasting figured accurate courses for spacecraft and missiles. Why not winds and clouds?