Chaos: Making a New Science
Rate it:
Open Preview
Read between November 9 - December 26, 2019
1%
Flag icon
WHERE CHAOS BEGINS, classical science stops. For as long as the world has had physicists inquiring into the laws of nature, it has suffered a special ignorance about disorder in the atmosphere, in the turbulent sea, in the fluctuations of wildlife populations, in the oscillations of the heart and the brain. The irregular side of nature, the discontinuous and erratic side—these have been puzzles to science, or worse, monstrosities. But in the 1970s a few scientists in the United States and Europe began to find a way through disorder. They were mathematicians, physicists, biologists, chemists, ...more
1%
Flag icon
When Mitchell Feigenbaum began thinking about chaos at Los Alamos, he was one of a handful of scattered scientists, mostly unknown to one another. A mathematician in Berkeley, California, had formed a small group dedicated to creating a new study of “dynamical systems.” A population biologist at Princeton University was about to publish an impassioned plea that all scientists should look at the surprisingly complex behavior lurking in some simple models. A geometer working for IBM was looking for a new word to describe a family of shapes—jagged, tangled, splintered, twisted, fractured—that he ...more
2%
Flag icon
Now that science is looking, chaos seems to be everywhere. A rising column of cigarette smoke breaks into wild swirls. A flag snaps back and forth in the wind. A dripping faucet goes from a steady pattern to a random one. Chaos appears in the behavior of the weather, the behavior of an airplane in flight, the behavior of cars clustering on an expressway, the behavior of oil flowing in underground pipes. No matter what the medium, the behavior obeys the same newly discovered laws. That realization has begun to change the way business executives make decisions about insurance, the way ...more
2%
Flag icon
The most passionate advocates of the new science go so far as to say that twentieth-century science will be remembered for just three things: relativity, quantum mechanics, and chaos. Chaos, they contend, has become the century’s third great revolution in the physical sciences. Like the first two revolutions, chaos cuts away at the tenets of Newton’s physics. As one physicist put it: “Relativity eliminated the Newtonian illusion of absolute space and time; quantum theory eliminated the Newtonian dream of a controllable measurement process; and chaos eliminates the Laplacian fantasy of ...more
3%
Flag icon
can always try to solve a problem by proving that no solution exists. Lorenz liked that, as he always liked the purity of mathematics, and when he graduated from Dartmouth College, in 1938, he thought that mathematics was his calling. Circumstance interfered, however, in the form of World War II, which put him to work as a weather forecaster for the Army Air Corps. After the war Lorenz decided to stay with meteorology, investigating the theory of it, pushing the mathematics a little further forward. He made a name for himself by publishing work on orthodox problems, such as the general ...more
3%
Flag icon
Not only did meteorologists scorn forecasting, but in the 1960s virtually all serious scientists mistrusted computers. These souped-up calculators hardly seemed like tools for theoretical science. So numerical weather modeling was something of a bastard problem. Yet the time was right for it. Weather forecasting had been waiting two centuries for a machine that could repeat thousands of calculations over and over again by brute force. Only a computer could cash in the Newtonian promise that the world unfolded along a deterministic path, rule-bound like the planets, predictable like eclipses ...more
4%
Flag icon
Weather was vastly more complicated, but it was governed by the same laws. Perhaps a powerful enough computer could be the supreme intelligence imagined by Laplace, the eighteenth-century philosopher-mathematician who caught the Newtonian fever like no one else: “Such an intelligence,” Laplace wrote, “would embrace in the same formula the movements of the greatest bodies of the universe and those of the lightest atom; for it, nothing would be uncertain and the future, as the past, would be present to its eyes.” In these days of Einstein’s relativity and Heisenberg’s uncertainty, Laplace seems ...more
This highlight has been truncated due to consecutive passage length restrictions.
4%
Flag icon
With his primitive computer, Lorenz had boiled weather down to the barest skeleton. Yet, line by line, the winds and temperatures in Lorenz’s printouts seemed to behave in a recognizable earthly way. They matched his cherished intuition about the weather, his sense that it repeated itself, displaying familiar patterns over time, pressure rising and falling, the airstream swinging north and south. He discovered that when a line went from high to low without a bump, a double bump would come next, and he said, “That’s the kind of rule a forecaster could use.” But the repetitions were never quite ...more
4%
Flag icon
One day in the winter of 1961, wanting to examine one sequence at greater length, Lorenz took a shortcut. Instead of starting the whole run over, he started midway through. To give the machine its initial conditions, he typed the numbers straight from the earlier printout. Then he walked down the hall to get away from the noise and drink a cup of coffee. When he returned an hour later, he saw something unexpected, something that planted a seed for a new science. THIS NEW RUN should have exactly duplicated the old. Lorenz had copied the numbers into the machine himself. The program had not ...more
This highlight has been truncated due to consecutive passage length restrictions.
6%
Flag icon
The Butterfly Effect was no accident; it was necessary. Suppose small perturbations remained small, he reasoned, instead of cascading upward through the system. Then when the weather came arbitrarily close to a state it had passed through before, it would stay arbitrarily close to the patterns that followed. For practical purposes, the cycles would be predictable—and eventually uninteresting. To produce the rich repertoire of real earthly weather, the beautiful multiplicity of it, you could hardly wish for anything better than a Butterfly Effect. The Butterfly Effect acquired a technical name: ...more
9%
Flag icon
Every scientist who turned to chaos early had a story to tell of discouragement or open hostility. Graduate students were warned that their careers could be jeopardized if they wrote theses in an untested discipline, in which their advisors had no expertise. A particle physicist, hearing about this new mathematics, might begin playing with it on his own, thinking it was a beautiful thing, both beautiful and hard—but would feel that he could never tell his colleagues about it. Older professors felt they were suffering a kind of midlife crisis, gambling on a line of research that many colleagues ...more
9%
Flag icon
As the chaos specialists spread, some departments frowned on these somewhat deviant scholars; others advertised for more. Some journals established unwritten rules against submissions on chaos; other journals came forth to handle chaos exclusively. The chaoticists or chaologists (such coinages could be heard) turned up with disproportionate frequency on the yearly lists of important fellowships and prizes. By the middle of the eighties a process of academic diffusion had brought chaos specialists into influential positions within university bureaucracies. Centers and institutes were founded to ...more
11%
Flag icon
Traditionally, a dynamicist would believe that to write down a system’s equations is to understand the system. How better to capture the essential features? For a playground swing or a toy, the equations tie together the pendulum’s angle, its velocity, its friction, and the force driving it. But because of the little bits of nonlinearity in these equations, a dynamicist would find himself helpless to answer the easiest practical questions about the future of the system. A computer can address the problem by simulating it, rapidly calculating each cycle. But simulation brings its own problem: ...more
11%
Flag icon
Smale’s Fields Medal honored a famous piece of work in topology, a branch of mathematics that flourished in the twentieth century and had a particular heyday in the fifties. Topology studies the properties that remain unchanged when shapes are deformed by twisting or stretching or squeezing. Whether a shape is square or round, large or small, is irrelevant in topology, because stretching can change those properties. Topologists ask whether a shape is connected, whether it has holes, whether it is knotted. They imagine surfaces not just in the one–, two–, and three-dimensional universes of ...more
14%
Flag icon
RAVENOUS FISH AND TASTY plankton. Rain forests dripping with nameless reptiles, birds gliding under canopies of leaves, insects buzzing like electrons in an accelerator. Frost belts where voles and lemmings flourish and diminish with tidy four-year periodicity in the face of nature’s bloody combat. The world makes a messy laboratory for ecologists, a cauldron of five million interacting species. Or is it fifty million? Ecologists do not actually know. Mathematically inclined biologists of the twentieth century built a discipline, ecology, that stripped away the noise and color of real life and ...more
15%
Flag icon
In the Malthusian scenario of unrestrained growth, the linear growth function rises forever upward. For a more realistic scenario, an ecologist needs an equation with some extra term that restrains growth when the population becomes large. The most natural function to choose would rise steeply when the population is small, reduce growth to near zero at intermediate values, and crash downward when the population is very large. By repeating the process, an ecologist can watch a population settle into its long-term behavior—presumably reaching some steady state. A successful foray into ...more
15%
Flag icon
Oddly, the flow of numbers begins to misbehave, quite a nuisance for anyone calculating with a hand crank. The numbers still do not grow without limit, of course, but they do not converge to a steady level, either. Apparently, though, none of these early ecologists had the inclination or the strength to keep churning out numbers that refused to settle down. Anyway, if the population kept bouncing back and forth, ecologists assumed that it was oscillating around some underlying equilibrium. The equilibrium was the important thing. It did not occur to the ecologists that there might be no ...more
15%
Flag icon
LATER, PEOPLE WOULD SAY that James Yorke had discovered Lorenz and given the science of chaos its name. The second part was actually true. Yorke was a mathematician who liked to think of himself as a philosopher, though this was professionally dangerous to admit. He was brilliant and soft-spoken, a mildly disheveled admirer of the mildly disheveled Steve Smale. Like everyone else, he found Smale hard to fathom. But unlike most people, he understood why Smale was hard to fathom. When he was just twenty-two years old, Yorke joined an interdisciplinary institute at the University of Maryland ...more
17%
Flag icon
As Lorenz had discovered a decade before, the only way to make sense of such numbers and preserve one’s eyesight is to create a graph. May drew a sketchy outline meant to sum up all the knowledge about the behavior of such a system at different parameters. The level of the parameter was plotted horizontally, increasing from left to right. The population was represented vertically. For each parameter, May plotted a point representing the final outcome, after the system reached equilibrium. At the left, where the parameter was low, this outcome would just be a point, so different parameters ...more
This highlight has been truncated due to consecutive passage length restrictions.
19%
Flag icon
As May looked at more and more biological systems through the prism of simple chaotic models, he continued to see results that violated the standard intuition of practitioners. In epidemiology, for example, it was well known that epidemics tend to come in cycles, regular or irregular. Measles, polio, rubella—all rise and fall in frequency. May realized that the oscillations could be reproduced by a nonlinear model and he wondered what would happen if such a system received a sudden kick—a perturbation of the kind that might correspond to a program of inoculation. Naïve intuition suggests that ...more
19%
Flag icon
chaos was found in records of New York City measles epidemics and in two hundred years of fluctuations of the Canadian lynx population, as recorded by the trappers of the Hudson’s Bay Company.
20%
Flag icon
The description would not have seemed apt to anyone who knew him in his later years, with his high imposing brow and his list of titles and honors, but Benoit Mandelbrot is best understood as a refugee. He was born in Warsaw in 1924 to a Lithuanian Jewish family, his father a clothing wholesaler, his mother a dentist. Alert to geopolitical reality, the family moved to Paris in 1936, drawn in part by the presence of Mandelbrot’s uncle, Szolem Mandelbrojt, a mathematician. When the war came, the family stayed just ahead of the Nazis once again, abandoning everything but a few suitcases and ...more
22%
Flag icon
“How Long Is the Coast of Britain?” Mandelbrot had come across the coastline question in an obscure posthumous article by an English scientist, Lewis F. Richardson, who groped with a surprising number of the issues that later became part of chaos. He wrote about numerical weather prediction in the 1920s, studied fluid turbulence by throwing a sack of white parsnips into the Cape Cod Canal, and asked in a 1926 paper, “Does the Wind Possess a Velocity?” (“The question, at first sight foolish, improves on acquaintance,” he wrote.) Wondering about coastlines and wiggly national borders, Richardson ...more
23%
Flag icon
Fractional dimension becomes a way of measuring qualities that otherwise have no clear definition: the degree of roughness or brokenness or irregularity in an object. A twisting coastline, for example, despite its immeasurability in terms of length, nevertheless has a certain characteristic degree of roughness. Mandelbrot specified ways of calculating the fractional dimension of real objects, given some technique of constructing a shape or given some data, and he allowed his geometry to make a claim about the irregular patterns he had studied in nature. The claim was that the degree of ...more
23%
Flag icon
One wintry afternoon in 1975, aware of the parallel currents emerging in physics, preparing his first major work for publication in book form, Mandelbrot decided he needed a name for his shapes, his dimensions, and his geometry. His son was home from school, and Mandelbrot found himself thumbing through the boy’s Latin dictionary. He came across the adjective fractus, from the verb frangere, to break. The resonance of the main English cognates—fracture and fraction—seemed appropriate. Mandelbrot created the word (noun and adjective, English and French) fractal.
24%
Flag icon
Yet the curve itself is infinitely long, as long as a Euclidean straight line extending to the edges of an unbounded universe. Just as the first transformation replaces a one-foot segment with four four-inch segments, every transformation multiplies the total length by four-thirds. This paradoxical result, infinite length in a finite space, disturbed many of the turn-of–the-century mathematicians who thought about it. The Koch curve was monstrous, disrespectful to all reasonable intuition about shapes and—it almost went without saying—pathologically unlike anything to be found in nature.
24%
Flag icon
Mandelbrot’s other advantage was the picture of reality he had begun forming in his encounters with cotton prices, with electronic transmission noise, and with river floods. The picture was beginning to come into focus now. His studies of irregular patterns in natural processes and his exploration of infinitely complex shapes had an intellectual intersection: a quality of self-similarity. Above all, fractal meant self-similar. Self-similarity is symmetry across scale. It implies recursion, pattern inside of pattern. Mandelbrot’s price charts and river charts displayed self-similarity, because ...more
25%
Flag icon
Imagine tracing the surface of the earth as it would look from a distance of one hundred kilometers out in space. The line goes up and down over trees and hillocks, buildings and—in a parking lot somewhere—a Volkswagen. On that scale, the surface is just a bump among many other bumps, a bit of randomness. Or imagine looking at the Volkswagen from closer and closer, zooming in with magnifying glass and microscope. At first the surface seems to get smoother, as the roundness of bumpers and hood passes out of view. But then the microscopic surface of the steel turns out to be bumpy itself, in an ...more
26%
Flag icon
Blood vessels, from aorta to capillaries, form another kind of continuum. They branch and divide and branch again until they become so narrow that blood cells are forced to slide through single file. The nature of their branching is fractal. Their structure resembles one of the monstrous imaginary objects conceived by Mandelbrot’s turn-of–the-century mathematicians. As a matter of physiological necessity, blood vessels must perform a bit of dimensional magic. Just as the Koch curve, for example, squeezes a line of infinite length into a small area, the circulatory system must squeeze a huge ...more
This highlight has been truncated due to consecutive passage length restrictions.
28%
Flag icon
In the end, the word fractal came to stand for a way of describing, calculating, and thinking about shapes that are irregular and fragmented, jagged and broken-up—shapes from the crystalline curves of snowflakes to the discontinuous dusts of galaxies.
35%
Flag icon
Dynamically speaking, a globular cluster is a big many-body problem. The two-body problem is easy. Newton solved it completely. Each body—the earth and the moon, for example—travels in a perfect ellipse around the system’s joint center of gravity. Add just one more gravitational object, however, and everything changes. The three-body problem is hard, and worse than hard. As Poincaré discovered, it is most often impossible. The orbits can be calculated numerically for a while, and with powerful computers they can be tracked for a long while before uncertainties begin to take over. But the ...more
37%
Flag icon
Most important, no one knew whether strange attractors would say anything about the deepest problem with nonlinear systems. Unlike linear systems, easily calculated and easily classified, nonlinear systems still seemed, in their essence, beyond classification—each different from every other. Scientists might begin to suspect that they shared common properties, but when it came time to make measurements and perform calculations, each nonlinear system was a world unto itself. Understanding one seemed to offer no help in understanding the next. An attractor like Lorenz’s illustrated the stability ...more
40%
Flag icon
Climatologists who use global computer models to simulate the long-term behavior of the earth’s atmosphere and oceans have known for several years that their models allow at least one dramatically different equilibrium. During the entire geological past, this alternative climate has never existed, but it could be an equally valid solution to the system of equations governing the earth. It is what some climatologists call the White Earth climate: an earth whose continents are covered by snow and whose oceans are covered by ice. A glaciated earth would reflect seventy percent of the incoming ...more
40%
Flag icon
wondering why it has never come about. It may simply be a matter of chance.
43%
Flag icon
applied the mathematics of renormalization group theory, with its use of scaling to collapse infinities into manageable quantities. In the spring of 1976 he entered a mode of existence more intense than any he had lived through. He would concentrate as if in a trance, programming furiously, scribbling with his pencil, programming again. He could not call C division for help, because that would mean signing off the computer to use the telephone, and reconnection was chancy. He could not stop for more than five minutes’ thought, because the computer would automatically disconnect his line. Every ...more
43%
Flag icon
That view of science works best when a well-defined discipline awaits the resolution of a well-defined problem. No one misunderstood the discovery of the molecular structure of DNA, for example. But the history of ideas is not always so neat. As nonlinear science arose in odd corners of different disciplines, the flow of ideas failed to follow the standard logic of historians. The emergence of chaos as an entity unto itself was a story not only of new theories and new discoveries, but also of the belated understanding of old ideas. Many pieces of the puzzle had been seen long before—by ...more
This highlight has been truncated due to consecutive passage length restrictions.
51%
Flag icon
THE MANDELBROT SET IS the most complex object in mathematics, its admirers like to say. An eternity would not be enough time to see it all, its disks studded with prickly thorns, its spirals and filaments curling outward and around, bearing bulbous molecules that hang, infinitely variegated, like grapes on God’s personal vine. Examined in color through the adjustable window of a computer screen, the Mandelbrot set seems more fractal than fractals, so rich is its complication across scales. A cataloguing of the different images within it or a numerical description of the set’s outline would ...more
55%
Flag icon
Barnsley’s central insight was this: Julia sets and other fractal shapes, though properly viewed as the outcome of a deterministic process, had a second, equally valid existence as the limit of a random process. By analogy, he suggested, one could imagine a map of Great Britain drawn in chalk on the floor of a room. A surveyor with standard tools would find it complicated to measure the area of these awkward shapes, with fractal coastlines, after all. But suppose you throw grains of rice into the air one by one, allowing them to fall randomly to the floor and counting the grains that land ...more
55%
Flag icon
In some sense, Barnsley contended, nature must be playing its own version of the chaos game. “There’s only so much information in the spore that encodes one fern,” he said. “So there’s a limit to the elaborateness with which a fern could grow. It’s not surprising that we can find equivalent succinct information to describe ferns. It would be surprising if it were otherwise.”
58%
Flag icon
It was spring in 1978 before the department quite believed that Shaw was abandoning his superconductivity thesis. He was so close to finishing. No matter how bored he was, the faculty reasoned that he could rush through the formalities, get his doctorate and move on to the real world. As for chaos, there were questions of academic suitability. No one at Santa Cruz was qualified to supervise a course of study in this field-without–a-name. No one had ever received a doctorate in it.
58%
Flag icon
“You can’t appreciate the kind of revelation that is unless you’ve been brainwashed by six or seven years of a typical physics curriculum. You’re taught that there are classical models where everything is determined by initial conditions, and then there are quantum mechanical models where things are determined but you have to contend with a limit on how much initial information you can gather. Nonlinear was a word that you only encountered in the back of the book. A physics student would take a math course and the last chapter would be on nonlinear equations. You would usually skip that, and, ...more
58%
Flag icon
“On a philosophical level, it struck me as an operational way to define free will, in a way that allowed you to reconcile free will with determinism. The system is deterministic, but you can’t say what it’s going to do next. At the same time, I’d always felt that the important problems out there in the world had to do with the creation of organization, in life or intelligence.
59%
Flag icon
THE MOST CHARACTERISTICALLY Santa Cruzian imprint on chaos research involved a piece of mathematics cum philosophy known as information theory, invented in the late 1940s by a researcher at the Bell Telephone Laboratories, Claude Shannon. Shannon called his work “The Mathematical Theory of Communication,” but it concerned a rather special quantity called information, and the name information theory stuck.
65%
Flag icon
THE CHOICE IS ALWAYS the same. You can make your model more complex and more faithful to reality, or you can make it simpler and easier to handle. Only the most naïve scientist believes that the perfect model is the one that perfectly represents reality. Such a model would have the same drawbacks as a map as large and detailed as the city it represents, a map depicting every park, every street, every building, every tree, every pothole, every inhabitant, and every map. Were such a map possible, its specificity would defeat its purpose: to generalize and abstract. Mapmakers highlight such ...more
68%
Flag icon
Christian Huygens, the seventeenth-century Dutch physicist who helped invent both the pendulum clock and the classical science of dynamics, stumbled upon one of the great examples of this form of regulation, or so the standard story goes. Huygens noticed one day that a set of pendulum clocks placed against a wall happened to be swinging in perfect chorus-line synchronization. He knew that the clocks could not be that accurate. Nothing in the mathematical description then available for a pendulum could explain this mysterious propagation of order from one pendulum to another. Huygens surmised, ...more
This highlight has been truncated due to consecutive passage length restrictions.
70%
Flag icon
Now all that has changed. In the intervening twenty years, physicists, mathematicians, biologists, and astronomers have created an alternative set of ideas. Simple systems give rise to complex behavior. Complex systems give rise to simple behavior. And most important, the laws of complexity hold universally, caring not at all for the details of a system’s constituent atoms.
70%
Flag icon
Still, no one could quite agree on the word itself. Philip Holmes, a white-bearded mathematician and poet from Cornell by way of Oxford: The complicated, aperiodic, attracting orbits of certain (usually low-dimensional) dynamical systems. Hao Bai-Lin, a physicist in China who assembled many of the historical papers of chaos into a single reference volume: A kind of order without periodicity. And: A rapidly expanding field of research to which mathematicians, physicists, hydrodynamicists, ecologists and many others have all made important contributions. And: A newly recognized and ubiquitous ...more
73%
Flag icon
The ordinary-sized stuff which is our lives, the things people write poetry about—clouds—daffodils—waterfalls—and what happens in a cup of coffee when the cream goes in—these things are full of mystery, as mysterious to us as the heavens were to the Greeks…. The future is disorder. A door like this has cracked open five or six times since we got up on our hind legs. It’s the best possible time to be alive, when almost everything you thought you knew was wrong.
74%
Flag icon
Astronomers had already found the fingerprints of chaos in violence on the sun’s surface, gaps in the asteroid belt, and the distribution of galaxies. Levin and her colleagues have found them in the exit from the big bang and in black holes. They predict that light trapped by a black hole can enter unstable chaotic orbits and be reemitted—making the black hole visible, if only briefly. Yes, chaos can light up black holes. “There are rational numbers to mine, fractal sets, and all kinds of truly beautiful consequences,” she says. “So on the one hand, people are horrified, on the other they’re ...more
74%
Flag icon
AS FOR ME, I never returned to chaos, but readers might spot seeds of all my later books in this one. I knew hardly anything about Richard Feynman, but he has a cameo here (see here). Isaac Newton has more than a cameo: he seems to be the antihero of chaos, or the god to be overthrown. I discovered only later, reading his notebooks and letters, how wrong I’d been about him. And for twenty years I’ve been pursuing a thread that began with something Rob Shaw told me, about chaos and information theory, as invented by Claude Shannon. Chaos is a creator of information—another apparent paradox. ...more