More on this book
Community
Kindle Notes & Highlights
Even the inefficient delivery of a therapeutic gene to a small subset of cells might be sufficient to treat an otherwise fatal disease.
In the spring of 1939, Albert Einstein, mulling over recent advances in nuclear physics in his study at Princeton University, realized that every step required to achieve the creation of an unfathomably powerful weapon had been individually completed. The isolation of uranium, nuclear fission, the chain reaction, the buffering of the reaction, and its controlled release in a chamber had all fallen into place. All that was required was sequence: if you strung these reactions together in order, you obtained an atomic bomb.
The crux, then, is not genetic emancipation (freedom from the bounds of hereditary illnesses), but genetic enhancement (freedom from the current boundaries of form and fate encoded by the human genome). The distinction between the two is the fragile pivot on which the future of genome editing whirls. If one man’s illness is another man’s normalcy, as this history teaches us, then one person’s understanding of enhancement may be another’s conception of emancipation (“why not make ourselves a little better?” as Watson asks).
The impulses, ambitions, fantasies, and desires that drive human history are, at least in part, encoded in the human genome. And human history has, in turn, selected genomes that carry these impulses, ambitions, fantasies, and desires.

