More on this book
Community
Kindle Notes & Highlights
Read between
February 3 - February 5, 2022
what remained of the unified forces split into the “electroweak” and the “strong nuclear” forces. Later still, the electroweak force split into the electromagnetic and the “weak nuclear” forces, laying bare the four distinct forces we have come to know and love: with the weak force controlling radioactive decay, the strong force binding the atomic nucleus, the electromagnetic force binding molecules, and gravity binding bulk matter.
All the while, the interplay of matter in the form of subatomic particles, and energy in the form of photons (massless vessels of light energy that are as much waves as they are particles) was incessant. The universe was hot enough for these photons to spontaneously convert their energy into matter-antimatter particle pairs, which immediately thereafter annihilate, returning their energy back to photons.
Shortly before, during, and after the strong and electroweak forces parted company, the universe was a seething soup of quarks, leptons, and their antimatter siblings, along with bosons, the particles that enable their interactions. None of these particle families is thought to be divisible into anything smaller or more basic, though each comes in several varieties.
Quarks are quirky beasts. Unlike protons, each with an electric charge of +1, and electrons, with a charge of –1, quarks have fractional charges that come in thirds. And you’ll never catch a quark all by itself; it will always be clutching other quarks nearby.
perhaps during one of the force splits, endowed the universe with a remarkable asymmetry, in which particles of matter barely outnumbered particles of antimatter: by a billion-and-one to a billion. That small difference in population would hardly get noticed by anybody amid the continuous creation, annihilation, and re-creation of quarks and antiquarks, electrons and antielectrons (better known as positrons), and neutrinos and antineutrinos.
This tepid universe was no longer hot enough or dense enough to cook quarks, and so they all grabbed dance partners, creating a permanent new family of heavy particles called hadrons
That quark-to-hadron transition soon resulted in the emergence of protons and neutrons as well as other, less familiar heavy particles, all composed of various combinations of quark species.
Without the billion-and-one to a billion imbalance between matter and antimatter, all mass in the universe would have self-annihilated, leaving a cosmos made of photons and nothing else—the ultimate let-there-be-light scenario.
But in the ever-expanding, ever-cooling universe, their days (seconds, really) are numbered. What was true for quarks, and true for hadrons, had become true for electrons: eventually only one electron in a billion survives. The rest annihilate with positrons, their antimatter sidekicks, in a sea of photons.
As the cosmos continues to cool—dropping below a hundred million degrees—protons fuse with protons as well as with neutrons, forming atomic nuclei and hatching a universe in which ninety percent of these nuclei are hydrogen and ten percent are helium, along with trace amounts of deuterium (“heavy” hydrogen), tritium (even heavier hydrogen), and lithium.
For the first billion years, the universe continued to expand and cool as matter gravitated into the massive concentrations we call galaxies. Nearly a hundred billion of them formed, each containing hundreds of billions of stars that undergo thermonuclear fusion in their cores. Those stars with more than about ten times the mass of the Sun achieve sufficient pressure and temperature in their cores to manufacture dozens of elements heavier than hydrogen, including those that compose planets and whatever life may thrive upon them.
After nine billion years of such enrichment, in an undistinguished part of the universe (the outskirts of the Virgo Supercluster) in an undistinguished galaxy (the Milky Way) in an undistinguished region (the Orion Arm), an undistinguished star (the Sun) was born.
Had Earth been much closer to the Sun, the oceans would have evaporated. Had Earth been much farther away, the oceans would have frozen. In either case, life as we know it would not have evolved. Within the chemically rich liquid oceans, by a mechanism yet to be discovered, organic molecules transitioned to self-replicating life. Dominant in this primordial soup were simple anaerobic bacteria—life that thrives in oxygen-empty environments but excretes chemically potent oxygen as one of its by-products. These early, single-celled organisms unwittingly transformed Earth’s carbon dioxide-rich
...more
Until Sir Isaac Newton wrote down the universal law of gravitation, nobody had any reason to presume that the laws of physics at home were the same as everywhere else in the universe. Earth had earthly things going on and the heavens had heavenly things going on.
Newton had figured out that the force of gravity pulling ripe apples from their orchards also guides tossed objects along their curved trajectories and directs the Moon in its orbit around Earth. Newton’s law of gravity also guides planets, asteroids, and comets in their orbits around the Sun and keeps hundreds of billions of stars in orbit within our Milky Way galaxy.
Being of the Sun, the new substance was given a name derived from the Greek word helios (“the Sun”), and was only later discovered in the lab. Thus, helium became the first and only element in the chemist’s Periodic Table to be discovered someplace other than Earth.
This universality of physical laws tells us that if we land on another planet with a thriving alien civilization, they will be running on the same laws that we have discovered and tested here on Earth—even if the aliens harbor different social and political beliefs.
If you do the math, you can determine that a star’s luminosity is steeply dependent on big G. In other words, if big G had been even slightly different in the past, then the energy output of the Sun would have been far more variable than anything the biological, climatological, or geological records indicate.
Among all constants, the speed of light is the most famous. No matter how fast you go, you will never overtake a beam of light. Why not? No experiment ever conducted has ever revealed an object of any form reaching the speed of light. Well-tested laws of physics predict and account for that fact.
All measurements suggest that the known fundamental constants, and the physical laws that reference them, are neither time-dependent nor location-dependent. They’re truly constant and universal.
Jupiter’s Great Red Spot, a raging anticyclone that has been going strong for at least 350 years, is driven by identical physical processes that generate storms on Earth and elsewhere in the solar system.
Another class of universal truths is the conservation laws, where the amount of some measured quantity remains unchanged no matter what. The three most important are the conservation of mass and energy, the conservation of linear and angular momentum, and the conservation of electric charge.
It happens that we cannot see, touch, or taste the source of eighty-five percent of the gravity we measure in the universe. This mysterious dark matter, which remains undetected except for its gravitational pull on matter we see, may be composed of exotic particles that we have yet to discover or identify.
For ordinary household gravity, Newton’s law works just fine. It got us to the Moon and returned us safely to Earth in 1969. For black holes and the large-scale structure of the universe, we need general relativity. And if you insert low mass and low speeds into Einstein’s equations they literally (or, rather, mathematically) become Newton’s equations—all good reasons to develop confidence in our understanding of all we claim to understand.
With each passing moment the universe got a little bit bigger, a little bit cooler, and a little bit dimmer. Meanwhile, matter and energy co-inhabited a kind of opaque soup, in which free-range electrons continually scattered photons every which way.
the entire universe was simply a glowing opaque fog in every direction you looked. The Sun and all other stars behave this way, too. As the temperature drops, particles move more and more slowly. And so right about then, when the temperature of the universe first dipped below a red-hot 3,000 degrees Kelvin, electrons slowed down just enough to be captured by passing protons, thus bringing full-fledged atoms into the world.
Our senses detect infrared only in the form of warmth on our skin. The LED revolution in advanced lighting technology creates pure visible light without wasting wattage on invisible parts of the spectrum.
The universe was opaque until 380,000 years after the big bang, so you could not have witnessed matter taking shape even if you’d been sitting front-row center. You couldn’t have seen where the galaxy clusters and voids were starting to form. Before anybody could have seen anything worth seeing, photons had to travel, unimpeded, across the universe, as carriers of this information.
As more and more photons escape unsmacked, they create an expanding “surface” of last scatter, some 120,000 years deep. That surface is where all the atoms in the universe were born: an electron joins an atomic nucleus, and a little pulse of energy in the form of a photon soars away into the wild red yonder.
Where matter accumulated, the strength of gravity grew, enabling more and more matter to gather. These regions seeded the formation of galaxy superclusters while other regions were left relatively empty.
To figure out how galaxies and clusters and superclusters arose, we use our best probe, the CMB—a potent time capsule that empowers astrophysicists to reconstruct cosmic history in reverse. Studying its patterns is like performing some sort of cosmic phrenology, as we analyze the skull bumps of the infant universe.
Ordinary matter is what we are all made of. It has gravity and interacts with light. Dark matter is a mysterious substance that has gravity but does not interact with light in any known way. Dark energy is a mysterious pressure in the vacuum of space that acts in the opposite direction of gravity, forcing the universe to expand faster than it otherwise would.
The simple discovery of the cosmic microwave background turned cosmology into something more than mythology. But it was the accurate and detailed map of the cosmic microwave background that turned cosmology into a modern science.
Aided by modern detectors, and modern theories, we have probed our cosmic countryside and revealed all manner of hard-to-detect things: dwarf galaxies, runaway stars, runaway stars that explode, million-degree X-ray-emitting gas, dark matter, faint blue galaxies, ubiquitous gas clouds, super-duper high-energy charged particles, and the mysterious quantum vacuum energy. With a list like that, one could argue that all the fun in the universe happens between the galaxies rather than within them.
In any reliably surveyed volume of space, dwarf galaxies outnumber large galaxies by more than ten to one.
You will find most (known) dwarf galaxies hanging out near bigger galaxies, in orbit around them like satellites. The two Magellanic Clouds are part of the Milky Way’s dwarf family. But the lives of satellite galaxies can be quite hazardous. Most computer models of their orbits show a slow decay that ultimately results in the hapless dwarfs getting ripped apart, and then eaten, by the main galaxy.
In fact, observations of clusters detect just such a glow between the galaxies, suggesting that there may be as many vagabond, homeless stars as there are stars within the galaxies themselves.
Supernovas are stars that have blown themselves to smithereens and, in the process, have temporarily (over several weeks) increased their luminosity a billion-fold, making them visible across the universe.
In other words, if telescopes observed mass rather than light, then our cherished galaxies in clusters would appear as insignificant blips amid a giant spherical blob of gravitational forces.
The galaxies are faint not only because they are distant but because the population of luminous stars within them was thin. Like the dinosaurs that came and went, leaving birds as their only modern descendant, the faint blue galaxies no longer exist, but presumably have a counterpart in today’s universe.
In either case, where there is mass there is gravity. And where there is gravity there is curved space, according to Einstein’s general theory of relativity. And where space is curved it can mimic the curvature of an ordinary glass lens and alter the pathways of light that pass through. Indeed, distant quasars and whole galaxies have been “lensed” by objects that happen to fall along the line of sight to Earth’s telescopes. Depending on the mass of the lens itself and the geometry of the line-of-sight alignments, the lensing action can magnify, distort, or even split the background source of
...more
Newton showed that you can derive the unique speed that a planet must have to maintain a stable orbit at any distance from the Sun, lest it descend back toward the Sun or ascend to a farther orbit. Turns out, if we could boost Earth’s orbital speed to more than the square root of two (1.4142 . . .) times its current value, our planet would achieve “escape velocity,” and leave the solar system entirely. We can apply the same reasoning to much larger systems, such as our own Milky Way galaxy, in which stars move in orbits that respond to the gravity from all the other stars; or in clusters of
...more
Rubin first found what she expected: within the visible disk of each galaxy, the stars farther from the center move at greater speeds than stars close in. The farther stars have more matter (stars and gas) between themselves and the galaxy center, enabling their higher orbital speeds.
Rubin discovered that their orbital speeds, which should now be falling with increasing distance out there in Nowheresville, in fact remained high. These largely empty volumes of space—the far-rural regions of each galaxy—contain too little visible matter to explain the anomalously high orbital speeds of the tracers. Rubin correctly reasoned that some form of dark matter must lie in these far-out regions, well beyond the visible edge of each spiral galaxy.
cosmic dark matter has about six times the total gravity of all the visible matter.
Could the dark matter reside in black holes? No, we think that we would have detected this many black holes from their gravitational effects on nearby stars. Could it be dark clouds? No, they would absorb or otherwise interact with light from stars behind them, which bona fide dark matter doesn’t do.
From this we conclude that most of the dark matter—hence, most of the mass in the universe—does not participate in nuclear fusion, which disqualifies it as “ordinary” matter, whose essence lies in a willingness to participate in the atomic and nuclear forces that shape matter as we know it.
Thus, as best we can figure, the dark matter doesn’t simply consist of matter that happens to be dark. Instead, it’s something else altogether. Dark matter exerts gravity according to the same rules that ordinary matter follows, but it does little else that might allow us to detect
For the smallest objects, such as moons and planets, no discrepancy exists. Earth’s surface gravity, for example, can be explained entirely by the stuff that’s under our feet. If you are overweight on Earth, don’t blame dark matter. Dark matter also has no bearing on the Moon’s orbit around Earth, nor on the movements of the planets around the Sun—but as we’ve already seen, we do need it to explain the motions of stars around the center of the galaxy.
At odds in the universe were two competing effects: gravity wants to make stuff coagulate, but the expansion wants to dilute