More on this book
Community
Kindle Notes & Highlights
Read between
January 15 - February 14, 2020
So fertile was this concept of universality that it was successfully applied in reverse. Further analysis of the Sun’s spectrum revealed the signature of an element that had no known counterpart on Earth. Being of the Sun, the new substance was given a name derived from the Greek word helios (“the Sun”), and was only later discovered in the lab. Thus, helium became the first and only element in the chemist’s Periodic Table to be discovered someplace other than Earth.
Science thrives not only on the universality of physical laws but also on the existence and persistence of physical constants. The constant of gravitation, known by most scientists as “big G,” supplies Newton’s equation of gravity with the measure of how strong the force will be. This quantity has been implicitly tested for variation over eons. If you do the math, you can determine that a star’s luminosity is steeply dependent on big G. In other words, if big G had been even slightly different in the past, then the energy output of the Sun would have been far more variable than anything the
...more
Perhaps one day we will learn that Newton’s gravity indeed requires adjustment. That’ll be okay. It has happened once before. Einstein’s 1916 general theory of relativity expanded on the principles of Newton’s gravity in a way that also applied to objects of extremely high mass. Newton’s law of gravity breaks down in this expanded realm, which was unknown to him. The lesson here is that our confidence flows through the range of conditions over which a law has been tested and verified. The broader that range, the more potent and powerful the law becomes in describing the cosmos. For ordinary
...more
In other words, after the laws of physics, everything else is opinion.
When something glows from being heated, it emits light in all parts of the spectrum, but will always peak somewhere. For household lamps that still use glowing metal filaments, the bulbs all peak in the infrared, which is the single greatest contributor to their inefficiency as a source of visible light. Our senses detect infrared only in the form of warmth on our skin. The LED revolution in advanced lighting technology creates pure visible light without wasting wattage on invisible parts of the spectrum. That’s how you can get crazy-sounding sentences like: “7 Watts LED replaces 60 Watts
...more
How bad is the situation? Have our known laws of gravity failed us? They certainly work within the solar system. Newton showed that you can derive the unique speed that a planet must have to maintain a stable orbit at any distance from the Sun, lest it descend back toward the Sun or ascend to a farther orbit. Turns out, if we could boost Earth’s orbital speed to more than the square root of two (1.4142 . . .) times its current value, our planet would achieve “escape velocity,” and leave the solar system entirely. We can apply the same reasoning to much larger systems, such as our own Milky Way
...more
Albert Einstein hardly ever set foot in the laboratory; he didn’t test phenomena or use elaborate equipment. He was a theorist who perfected the “thought experiment,” in which you engage nature through your imagination, by inventing a situation or model and then working out the consequences of some physical principle. In Germany before World War II, laboratory-based physics far outranked theoretical physics in the minds of most Aryan scientists. Jewish physicists were all relegated to the lowly theorists’ sandbox and left to fend for themselves. And what a sandbox that would become.
One of the most powerful and far-reaching theoretical models ever devised, already introduced in these pages, is Einstein’s general theory of relativity—but you can call it GR after you get to know it better. Published in 1916, GR outlines the relevant mathematical details of how everything in the universe moves under the influence of gravity. Every few years, lab scientists devise ever more precise experiments to test the theory, only to further extend the envelope of the theory’s accuracy. A modern example of this stunning knowledge of nature that Einstein has gifted us, comes from 2016,
...more
Only three of the naturally occurring elements were manufactured in the big bang. The rest were forged in the high-temperature hearts and explosive remains of dying stars, enabling subsequent generations of star systems to incorporate this enrichment, forming planets and, in our case, people.
With only one proton in its nucleus, hydrogen is the lightest and simplest element, made entirely during the big bang. Out of the ninety-four naturally occurring elements, hydrogen lays claim to more than two-thirds of all the atoms in the human body, and more than ninety percent of all atoms in the cosmos, on all scales, right on down to the solar system. Hydrogen in the core of the massive planet Jupiter is under so much pressure that it behaves more like a conductive metal than a gas, creating the strongest magnetic field among the planets. The English chemist Henry Cavendish discovered
...more
Spheres in nature are made by forces, such as surface tension, that want to make objects smaller in all directions. The surface tension of the liquid that makes a soap bubble squeezes air in all directions. It will, within moments of being formed, enclose the volume of air using the least possible surface area. This makes the strongest possible bubble because the soapy film will not have to be spread any thinner than is absolutely necessary. Using freshman-level calculus you can show that the one and only shape that has the smallest surface area for an enclosed volume is a perfect sphere. In
...more
Interplanetary space is so not-empty that Earth, during its 30 kilometer-per-second orbital journey, plows through hundreds of tons of meteors per day—most of them no larger than a grain of sand. Nearly all of them burn in Earth’s upper atmosphere, slamming into the air with so much energy that the debris vaporizes on contact. Our frail species evolved under this protective blanket. Larger, golf-ball-size meteors heat fast but unevenly, and often shatter into many smaller pieces before they vaporize.
Earth’s Moon is about 1/400th the diameter of the Sun, but it is also 1/400th as far from us, making the Sun and the Moon the same size in the sky—a coincidence not shared by any other planet–moon combination in the solar system, allowing for uniquely photogenic total solar eclipses. Earth has also tidally locked the Moon, leaving it with identical periods of rotation on its axis and revolution around Earth. Wherever and whenever this happens, the locked moon shows only one face to its host planet.
The Sun loses material from its surface at a rate of more than a million tons per second. We call this the “solar wind,” which takes the form of high-energy charged particles.
Traveling up to a thousand miles per second, these particles stream through space and are deflected by planetary magnetic fields. The particles spiral down toward the north and south magnetic poles, forcing collisions with gas molecules and leaving the atmosphere aglow with colorful aurora. The Hubble Space Telescope has spotted aurora near the poles of both Saturn and Jupiter. And on Earth, the aurora borealis and australis (the northern and southern lights) serve as intermittent reminders of how nice it is to have a protective atmosphere.
Earth’s atmosphere is commonly described as extending dozens of miles above Earth’s surface. Satellites in “low” Earth orbit typically travel between one hundred and four hundred miles up, completing an orbit in about ninety minutes. While you can’t breathe at those altitudes, some atmospheric molecules remain—enough to slowly drain orbital energy from unsuspecting satellites. To combat this drag, satellites in low orbit require intermittent boosts, lest they fall back to Earth and burn up in the atmosphere. An alternative way to define the edge of our atmosphere is to ask where its density of
...more
This highlight has been truncated due to consecutive passage length restrictions.
The planet Jupiter, with its mighty gravitational field, bats out of harm’s way many comets that would otherwise wreak havoc on the inner solar system. Jupiter acts as a gravitational shield for Earth, a burly big brother, allowing long (hundred-million-year) stretches of relative peace and quiet on Earth.
Light takes time to reach Earth’s observatories from the depths of space, and so you see objects and phenomena not as they are but as they once were, back almost to the beginning of time itself.
We do not simply live in this universe. The universe lives within us. That being said, we may not even be of this Earth. Several separate lines of research, when considered together, have forced investigators to reassess who we think we are and where we think we came from. As we’ve already seen, when a large asteroid strikes a planet, the surrounding areas can recoil from the impact energy, catapulting rocks into space. From there, they can travel to—and land on—other planetary surfaces. Second, microorganisms can be hardy. Extremophiles on Earth can survive wide ranges of temperature,
...more