More on this book
Community
Kindle Notes & Highlights
So is contact in machine joints, or electrical contact. Contacts between surfaces have properties quite independent of the materials involved. They are properties that turn out to depend on the fractal quality of the bumps upon bumps upon bumps. One simple but powerful consequence of the fractal geometry of surfaces is that surfaces in contact do not touch everywhere. The bumpiness at all scales prevents that. Even in rock under enormous pressure, at some sufficiently small scale it becomes clear that gaps remain, allowing fluid to flow. To Scholz, it is the Humpty-Dumpty Effect. It is why two
...more
the claim of fractal geometry is that, for some elements of nature, looking for a characteristic scale becomes a distraction. Hurricane. By definition, it is a storm of a certain size. But the definition is imposed by people on nature. In reality, atmospheric scientists are realizing that tumult in the air forms a continuum, from the gusty swirling of litter on a city street corner to the vast cyclonic systems visible from space. Categories mislead. The ends of the continuum are of a piece with the middle. It happens that the equations of fluid flow are in many contexts dimensionless, meaning
...more
Typical human lungs pack in a surface bigger than a tennis court.
THE COMPLEX BOUNDARIES OF NEWTON’S METHOD.
FRACTAL CLUSTERS. A random clustering of particles generated by a computer produces a “percolation network,” one of many visual models inspired by fractal geometry. Applied physicists discovered that such models imitate a variety of real-world processes, such as the formation of polymers and the diffusion of oil through factured rock. Each color in the percolation network represents a grouping that is connected throughout. THE GREAT RED SPOT: REAL AND SIMULATED. The Voyager satellite revealed Jupiter’s surface is a seething, turbulent fluid, with horizontal bands of east-west flow. The Great
...more
In the end, the word fractal came to stand for a way of describing, calculating, and thinking about shapes that are irregular and fragmented, jagged and broken-up—shapes from the crystalline curves of snowflakes to the discontinuous dusts of galaxies. A fractal curve implies an organizing structure that lies hidden among the hideous complication of such shapes. High school students could understand fractals and play with them; they were as primary as the elements of Euclid. Simple computer programs to draw fractal pictures made the rounds of personal computer hobbyists.
The first discoveries were realizations that each change of scale brought new phenomena and new kinds of behavior. For modern particle physicists, the process has never ended. Every new accelerator, with its increase in energy and speed, extends science’s field of view to tinier particles and briefer time scales, and every extension seems to bring new information. At first blush, the idea of consistency on new scales seems to provide less information. In part, that is because a parallel trend in science has been toward reductionism. Scientists break things apart and look at them one at a time.
...more
Our feeling for beauty is inspired by the harmonious arrangement of order and disorder as it occurs in natural objects—in clouds, trees, mountain ranges, or snow crystals. The shapes of all these are dynamical processes jelled into physical forms, and particular combinations of order and disorder are typical for them.”