As I survey the data economy, I see loads of emerging mathematical models that might be used for good and an equal number that have the potential to be great—if they’re not abused. Consider the work of Mira Bernstein, a slavery sleuth. A Harvard PhD in math, she created a model to scan vast industrial supply chains, like the ones that put together cell phones, sneakers, or SUVs, to find signs of forced labor. She built her slavery model for a nonprofit company called Made in a Free World. Its goal is to use the model to help companies root out the slave-built components in their products. The
As I survey the data economy, I see loads of emerging mathematical models that might be used for good and an equal number that have the potential to be great—if they’re not abused. Consider the work of Mira Bernstein, a slavery sleuth. A Harvard PhD in math, she created a model to scan vast industrial supply chains, like the ones that put together cell phones, sneakers, or SUVs, to find signs of forced labor. She built her slavery model for a nonprofit company called Made in a Free World. Its goal is to use the model to help companies root out the slave-built components in their products. The idea is that companies will be eager to free themselves from this scourge, presumably because they oppose slavery, but also because association with it could devastate their brand. Bernstein collected data from a number of sources, including trade data from the United Nations, statistics about the regions where slavery was most prevalent, and detailed information about the components going into thousands of industrial products, and incorporated it all into a model that could score a given product from a certain region for the likelihood that it was made using slave labor. “The idea is that the user would contact his supplier and say, ‘Tell me more about where you’re getting the following parts of your computers,’ ” Bernstein told Wired magazine. Like many responsible models, the slavery detector does not overreach. It merely points to suspicious places and leaves the last part of the ...
...more
This highlight has been truncated due to consecutive passage length restrictions.