More on this book
Community
Kindle Notes & Highlights
Read between
April 21 - June 12, 2023
Cows and pea plants (and, indeed, all the rest of us) have an almost identical gene called the histone H4 gene. The DNA text is 306 characters long.
It is hard to estimate exactly how many times the histone H4 document has been recopied in the lineage leading to cows from the common ancestor with peas, but it is probably as many as 20 billion times. It is also hard to find a yardstick with which to compare the preservation of more than 99 per cent of information in 20 billion successive copyings.
The probability of any particular letter being miscopied on any one copying occasion turns out to be a little more than one in a billion.
The baseline rate of evolution, in the absence of natural selection, is the maximum possible rate. That is synonymous with the mutation rate.
This is that living organisms exist for the benefit of DNA rather than the other way around. This won’t be obvious yet, but I hope to persuade you of it. The messages that DNA molecules contain are all but eternal when seen against the time scale of individual lifetimes.
DNA gets the best of both worlds. DNA molecules themselves, as physical entities, are like dewdrops. Under the right conditions they come into existence at a great rate, but no one of them has existed for long, and all will be destroyed within a few months. They are not durable like rocks. But the patterns that they bear in their sequences are as durable as the hardest rocks. They have what it takes to exist for millions of years, and that is why they are still here today.
What is the vital ingredient that a dead planet like the early Earth must have, if it is to have a chance of eventually coming alive, as our planet did? It is not breath, not wind, not any kind of elixir or potion. It is not a substance at all, it is a property, the property of self-replication. This is the basic ingredient of cumulative selection. There must somehow, as a consequence of the ordinary laws of physics, come into being self-copying entities or, as I shall call them, replicators.
But modern DNA replication is a high-technology affair, with elaborate proofreading techniques that have been perfected over many generations of cumulative selection.
The business part of the virus is an RNA plan. Superficially it is indistinguishable from any of the other RNA working blueprints that are floating around, after being run off the bacterium’s DNA master. But if you read the small print of the viral RNA you will find something devilish written there. The letters spell out a plan for making RNA-replicase: for making machines that make more copies of the very same RNA plans, that make more machines that make more copies of the plans, that make more …
It is just that the structure of the viral RNA happens to be such that it makes cellular machinery churn out copies of itself.
Replicators that happen to have what it takes to get replicated would come to predominate in the world, no matter how long and indirect the chain of causal links by which they influence their probability of being replicated. And, by the same token, the world will come to be filled with the links in this causal chain.
Chance, luck, coincidence, miracle. One of the main topics of this chapter is miracles and what we mean by them. My thesis will be that events that we commonly call miracles are not supernatural, but are part of a spectrum of more-or-less improbable natural events. A miracle, in other words, if it occurs at all, is a tremendous stroke of luck. Events don’t fall neatly into natural events versus miracles.
Cumulative selection is the key to all our modern explanations of life. It strings a series of acceptably lucky events (random mutations) together in a nonrandom sequence so that, at the end of the sequence, the finished product carries the illusion of being very very lucky indeed, far too improbable to have come about by chance alone, even given a timespan millions of times longer than the age of the universe so far.
Cumulative selection is the key but it had to get started, and we cannot escape the need to postulate a single-step chance event in the origin of cumulative selection itself. And that vital first step was a difficult one because, at its heart, there lies what seems to be a paradox. The replication processes that we know seem to need complicated machinery to work.
But cumulative selection cannot work unless there is some minimal machinery of replication and replicator power, and the only machinery of replication that we know seems too complicated to have come into existence by means of anything less than many generations of cumulative selection! Some people see this as a fundamental flaw in the whole theory of the blind watchmaker.
To explain the origin of the DNA/protein machine by invoking a supernatural Designer is to explain precisely nothing, for it leaves unexplained the origin of the Designer.
The more we can get away from miracles, major improbabilities, fantastic coincidences, large chance events, and the more thoroughly we can break large chance events up into a cumulative series of small chance events, the more satisfying to rational minds our explanations will be.
The flaw in the argument lies in the inference that, because life has arisen here, it can’t be too terribly improbable. You will notice that this inference contains the built-in assumption that whatever went on on Earth is likely to have gone on elsewhere in the universe, and this begs the whole question. In other words, that kind of statistical argument, that there must be life elsewhere in the universe because there is life here, builds in, as an assumption, what it is setting out to prove. This doesn’t mean that the conclusion that life exists all around the universe is necessarily wrong.
...more
They have set up in flasks miniature reconstructions of conditions on the early Earth. They have passed through the flasks electric sparks simulating lightning, and ultraviolet light, which would have been much stronger before the Earth had an ozone layer shielding it from the sun’s rays. The results of these experiments have been exciting. Organic molecules, some of them of the same general types as are normally only found in living things, have spontaneously assembled themselves in these flasks. Neither DNA nor RNA has appeared, but the building blocks of these large molecules, called
...more
Cairns-Smith’s view of the DNA/protein machinery is that it probably came into existence relatively recently, perhaps as recently as three billion years ago. Before that there were many generations of cumulative selection, based upon some quite different replicating entities. Once DNA was there, it proved to be so much more efficient as a replicator, and so much more powerful in its effects on its own replication, that the original replication system that spawned it was cast off and forgotten. The modern DNA machinery, according to this view, is a late-comer, a recent usurper of the role of
...more
Chemists divide their subject into two main branches, organic and inorganic. Organic chemistry is the chemistry of one particular element, carbon. Inorganic chemistry is all the rest. Carbon is important and deserves to have its own private branch of chemistry, partly because life chemistry is all carbon-chemistry, and partly because those same properties that make carbon-chemistry suitable for life also make it suitable for industrial processes, such as those of the plastics industry.
Cairns-Smith believes that the original life on this planet was based on self-replicating inorganic crystals such as silicates. If this is true, organic replicators, and eventually DNA, must later have taken over or usurped the role.
Similarly, DNA and protein are two pillars of a stable and elegant arch, which persists once all its parts simultaneously exist. It is hard to imagine it arising by any step-by-step process unless some earlier scaffolding has completely disappeared. That scaffolding must itself have been built by an earlier form of cumulative selection, at whose nature we can only guess.
If you could, you’d be rich; no on second thoughts you wouldn’t, because any fool could do the same.
But, given that brains, books and computers exist, these new replicators, which I called memes to distinguish them from genes, can propagate themselves from brain to brain, from brain to book, from book to brain, from brain to computer, from computer to computer. As they propagate they can change — mutate.
Could it be that one far-off day intelligent computers will speculate about their own lost origins? Will one of them tumble to the heretical truth, that they have sprung from a remote, earlier form of life, rooted in organic, carbon chemistry, rather than the silicon-based electronic principles of their own bodies?
If we were biologically capable of living for a million years, and wanted to do so, we should assess risks quite differently. We should make a habit of not crossing roads, for instance, for if you crossed a road every day for half a million years you would undoubtedly be run over.
Evolution has equipped our brains with a subjective consciousness of risk and improbability suitable for creatures with a lifetime of less than one century.
One and a half aeons is about the time that elapsed between the origin of the Earth and the first bacterialike fossils.
Our own subjective judgement about the plausibility of a theory of the origin of life is likely to be wrong by a factor of a hundred million. In fact our subjective judgement is probably wrong by an even greater margin. Not only are our brains equipped by nature to assess risks of things in a short time; they are also equipped to assess risks of things happening to us personally, or to a narrow circle of people that we know.
Natural selection may only subtract, but mutation can add. There are ways in which mutation and natural selection together can lead, over the long span of geological time, to a building up of complexity that has more in common with addition than with subtraction.
There are two main ways in which this build-up can happen. The first of these goes under the name of ‘coadapted genotypes’; the second under the name of ‘arms races’. The two are superficially rather different from one another, but they are united under the headings of ‘coevolution’ and ‘genes as each others’ environments’.
As we have seen, the long-lived gene as an evolutionary unit is not any particular physical structure but the textual archival information that is copied on down the generations.
We differ from bacteria mainly in that our cells have discrete little mini-cells inside them. These include the nucleus, which houses the chromosomes; the tiny bomb-shaped objects called mitochondria (which we briefly met in Figure 1), filled with intricately folded membranes; and, in the (eukaryotic) cells of plants, chloroplasts. Mitochondria and chloroplasts have their own DNA, which replicates and propagates itself entirely independently of the main DNA in the chromosomes of the nucleus.
But individual zebras do everything in their power to resist being eaten by lions, and from the lions’ point of view this is making life harder for them.
One side gets a little better because the other side has. And vice versa. The process goes into a vicious spiral, on a timescale of hundreds of thousands of years.
I shall not pursue the point here, but it can be developed into one of the explanations for why particular arms races stabilize and do not go on for ever — do not lead to predators pursuing their prey at Mach 2 and so on.
In fact the arms-race idea, in its purest form, suggests that there should be absolutely zero progress in the success rate on both sides of the arms race, while there is very definite progress in the equipment for success on both sides. Predators become better equipped for killing, but at the same time prey become better equipped to avoid being killed, so the net result is no change in the rate of successful killings.
The two sides are ‘trying’ to do very different things. Cheetahs are trying to eat gazelles. Gazelles are not trying to eat cheetahs, they are trying to avoid being eaten by cheetahs. From an evolutionary point of view asymmetric arms races are more interesting, since they are more likely to generate highly complex weapons systems.
The fact is that in the primeval struggle of the jungle, as in the refinements of civilized warfare, we see in progress a great evolutionary armament race — whose results, for defence, are manifested in such devices as speed, alertness, armour, spinescence, burrowing habits, nocturnal habits, poisonous secretions, nauseous taste, and [camouflage and other kinds of protective coloration]; and for offence, in such counter-attributes as speed, surprise, ambush, allurement, visual acuity, claws, teeth, stings, poison fangs, and [lures]. Just as greater speed in the pursued has developed in
...more
High-speed technology is not cheap. It demands long leg bones, powerful muscles, capacious lungs. These things can be had by any animal that really needs to run fast, but they must be bought. They are bought at a steeply increasing price. The price is measured as what economists call ‘opportunity cost’.
The cost of sending a child to a private, fee-paying school is all the things that you can’t afford to buy as a result: the new car that you can’t afford, the holidays in the sun that you can’t afford
The rabbit runs faster than the fox, because the rabbit is running for his life, while the fox is only running for his dinner.
To summarize the message of this chapter, genes are selected, not for their intrinsic qualities, but by virtue of their interactions with their environments. An especially important component of a gene’s environment is other genes. The general reason why this is such an important component is that other genes also change, as generations go by in evolution. This has two main kinds of consequences.
First, it has meant that those genes are favoured that have the property of ‘cooperating’ with those other genes that they are likely to meet in circumstances that favour cooperation. This is especially, though not exclusively, true of genes within the same species, because genes within one species frequently share cells with one another. It has led to the evolution of large gangs of cooperating genes, and ultimately to the evolution of bodies themselves, as the products of their cooperative enterprise.
Second, circumstances don’t always favour cooperation. In their march down geological time, genes also encounter one another in circumstances that favour antagonism. This is especially, though not exclusively, true of genes in different species.
When selected genes in one species provide the environment in which genes in another species are selected, the result is often an evolutionary arms race.
Bodies evolve integrated and coherent purposefulness because genes are selected in the environment provided by other genes within the same species. But because genes are also selected in the environment provided by other genes in different species, arms races develop. And arms races constitute the other great force propelling evolution in directions that we recognize as ‘progressive’, complex ‘design’. Arms races have an inherently unstable ‘runaway’ feel to them.
The human mind is an inveterate analogizer. We are compulsively drawn to see meaning in slight similarities between very different processes.