Doug Lautzenheiser

43%
Flag icon
We can think of a Bayesian network as a “generative model,” a recipe for probabilistically generating a state of the world: first decide independently whether there’s a burglary and/or an earthquake, then based on that decide whether the alarm goes off, and then based on that whether Bob and Claire call. A Bayesian network tells a story: A happened, and it led to B; at the same time, C also happened, and B and C together caused D. To compute the probability of a particular story, we just multiply the probabilities of all of its different strands.
The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
Rate this book
Clear rating