Dealers of Lightning: Xerox PARC and the Dawn of the Computer Age
Rate it:
Open Preview
20%
Flag icon
LOGO’s genius was its ability to turn the abstract (one can command a computer to do something) into the concrete (one can direct the turtle to draw a parallelogram). To Kay it was a revelation to watch Papert’s ten-, eleven-, and twelve-year-old subjects use a simple computer to create designs one would otherwise assume could only be achieved by mainframe systems loaded with complex algorithms. Papert showed the way toward reducing the machine from demigod to tool (in Wes Clark’s phrase) by subjecting it to the unforgiving scrutiny of children. Kay never forgot the lesson.
21%
Flag icon
Kay’s own 1969 thesis incorporated these ideas and others into what must be one of the oddest dissertations ever submitted for a doctorate in a scientific discipline, featuring as it did epigraphs from, among others, W. H. Auden, J. S. Bach, and Kahlil Gibran (“You would touch with your fingers the naked body of your dreams”). The hand-drawn illustrations included not only complex diagrams of functions and logical trees but line drawings of fanciful single-user machines. These had screen, keyboard, and mouse unified into a desktop console, a big brother to the portable all-purpose computer ...more
21%
Flag icon
Kay’s thesis outlined an interactive computer called the FLEX machine which he had designed in partnership with an unsung hardware genius named Ed Cheadle, who was an important engineer for a Salt Lake aerospace company. The FLEX incorporated many of the ideas Kay would develop in the coming years at PARC, including compactness, object-oriented programming, and the use of a display screen. But it was not quite the personal computer he envisioned, in part because it was not powerful enough to perform all the functions required by his ideal and in part because it utilized a complicated and ...more
21%
Flag icon
I spent the rest of the conference calculating just when the silicon of the FLEX could be put on the back of the display.” The answer, according to Moore’s Law, seemed to be at least ten years off.
21%
Flag icon
The day he came to PARC for his job interview, Rick Jones invited him into his office and asked him a stock question. “What do you think your greatest achievement will be at PARC?” he asked. “It’ll be a personal computer,” Kay replied. “What’s that?” Spying a flat portfolio on Jones’s desk the size of a student’s notebook, Kay seized it and flipped it open. “This will be a flat-panel display,” he said, indicating the cover, which he held upright. “There’ll be a keyboard here on the bottom, and enough power to store your mail, files, music, artwork, and books. All in a package about this size ...more
23%
Flag icon
Asking the question was the same as answering it. “The talk,” Kay said, “turned to how long it would take us to build our own PDP—10.” The answer was about one year and less than $1 million. The truth was that Xerox had only forbidden the lab to buy a PDP—10. Nobody had said anything about cloning one.
23%
Flag icon
The idea that they were building their own computing environment galvanized them into working at breakneck speed, like settlers hastening to erect a rudimentary shelter before the onset of a hard winter. An almost alchemical change overtook the lab, infusing it with the pure excitement of discovery that a research manager may be lucky to witness once in a lifetime. People would contend later that being forced to clone the PDP—10 was the best thing that ever happened to CSL—even Strassmann eventually bragged, “I made everyone a hero.” This is the period they were referring to, when a bunch of ...more
24%
Flag icon
“I learned enough about the processor to realize I could use some of those spare cycles,” he recounted. “In effect I could kidnap the processor to do some arithmetic for the disk controller. I wouldn’t have to put so many gates into the disk controller”—saving another few thousand dollars in hardware—” if I could periodically borrow the processor to compute some of the things I needed to compute.” McCreight’s realization was their first embrace of the concept of “multitasking”—giving the processor numerous jobs to juggle at once. Implemented on this modest scale in MAXC, it was destined to pay ...more
25%
Flag icon
“In a small group the dynamics are like those on a good basketball team,” Kay observed. “Everybody has to be able to play the whole game. Each person should have certain things they’re better at than the others, but everyone should be pretty good at everything.”
26%
Flag icon
Pendery “really didn’t understand what we were talking about,” Kay recalled. Instead he was “interested in ‘trends’ and ‘what was the future going to be like’ and how Xerox could ‘defend against it.’” In the course of one frustrating encounter Kay blurted out the line destined to become his (and PARC’s) unofficial credo. “Look,” he said, “the best way to predict the future is to invent it!”
26%
Flag icon
PARC further understood that Moore’s Law would pack its greatest wattage in the visual interaction between computer and man. Virtually every paper touched on this topic and some dwelled on it at length (Kay’s was devoted entirely to display technology). It was as though the lab had finally absorbed the lesson Bob Taylor had been pressing on it for more than a year: The computer is a communications device in which the display is the whole point.
26%
Flag icon
And there at PARC he invented the laser printer, the success of which contradicts the canard that Xerox never earned a dime from the Palo Alto Research Center. It is one of the ironies of the story that despite Jack Goldman’s tireless efforts to keep PARC insulated from Webster’s copier-duplicator mentality, the most profitable product PARC ever produced sprang from the mind of a Webster man.
29%
Flag icon
Yet the two executives’ disagreement was more than a technical misunderstanding. It reflected a fundamental clash of marketing values. O’Neill saw little point in committing Xerox to selling a machine for which there was no immediate prospect of high-volume production or marketing backup. The company would not sell Livermore a prototype copier; why sell it a prototype laser printer? Goldman’s rejoinder was that there was a world of difference between introducing a new version of an old copier and launching an entirely new technology; the only way to accomplish the latter was to feed the ...more
29%
Flag icon
“A bunch of horse’s asses who didn’t know anything about technology were making the decision,” Goldman recollected.
29%
Flag icon
Still, it was a Xerox-style victory, Pyrrhic at best. Although the committee accepted laser technology, it rejected Goldman’s appeal to build laser-adapted Model 7000 copiers, as Starkweather had done. This would have allowed the company to market a laser printer within a year. The panel decided instead to wait until the launch of Xerox’s next generation of high-speed copiers, the 9000 series—which was not scheduled for another three years. It was a perilous delay. The plan to commercialize the laser printer would be killed and resurrected three times in that period, saved only by the ...more
29%
Flag icon
“Years afterwards I went back there,” Starkweather said. “I ran into my old boss, the one who had tried to keep me from leaving. His last words to me were, ‘Are you still playing around with that laser stuff?’ “By then the laser printer was a $2 billion-a-year business.”
29%
Flag icon
Bob Taylor liked to tell people that his style of managing CSL combined the best features of all the research labs he had ever known. But its structure sprouted largely from a small kernel: the management principles developed at ARPA. Taylor’s predecessors had bequeathed him the axiom that the best way to manage research was to select the best people in a given field and set them loose. Scientists with the lofty skills ARPA demanded, Ivan Sutherland said, “are people who have ideas you can either back or not, but they are quite difficult to influence. You can maybe convince them that ...more
30%
Flag icon
The name derived from the book Beat the Dealer, by Edward O. Thorp, an MIT math professor who had developed a surefire system for winning at blackjack—“beating the dealer”—by counting the high- and low-value cards dealt out in hands.
30%
Flag icon
What interested him about Beat the Dealer was its compelling metaphor of a doughty individual fielding the challenge of a group of trained and determined adversaries. In casino blackjack the dealer plays against everyone at the table. In Taylor’s variant a single researcher would propose an idea or project, then stand alone to defend it against dissection by his peers.
30%
Flag icon
Taylor would open each session with ten to fifteen minutes of housekeeping items before yielding the floor to that week’s designated dealer. At that point the game transmuted into something more like poker. It was the dealer’s prerogative to set not only the topic of discussion, but the rules of debate.
30%
Flag icon
Kay advised, “Just talk about something you know.” “So I gave a speech about the sociolinguistics of Nepalese language and culture, and we had a good time with that,” Jeffers recalled with relief. “Actually, I felt quite at home.” This was also part of Taylor’s scheme. Once accepted into the lab, you were immune to the petty harassments common to university departments. “You were part of the extended family,” related John Shoch, a member of Kay’s lab. “No one ever asked, ‘Who the hell are you and what are you doing here?’” The alternative, Taylor believed, was for one-upmanship to hobble the ...more
30%
Flag icon
Outside Dealer with its deliberate intellectual gunplay, PARC in this period was a model of casual collegiality. The place retained the ambiance of a college campus, which was unsurprising. Most of the staff, after all, were fresh out of grad school (some were still working toward their advanced degrees while working full-time at PARC). Unmarried or with young families, their social spheres would not extend much beyond their laboratory colleagues until much later, when those families began to grow and exercised their own gravitational pull. For now, driven by the thrill of pursuing a common ...more
31%
Flag icon
“There isn’t an organization newly begun where you don’t find those honeymoon years where there’s a special bond among people,” reflected Jeffers, who recognized the phenomenon from the Peace Corps. “It was true there, it was true in PARC. It’s true in anything that’s new. It’s a great period. Everyone should be a part of something at the beginning.”
31%
Flag icon
If an idea worked, the team stuck together for the next three or six months to complete the job; if not, everyone simply dispersed like free electrons in search of a new creative valence. Thacker viewed this system as “a continuous form of peer review. Projects that were exciting and challenging received something much more important than financial and administrative support. They received help and participation…As a result, quality work flourished, less interesting work tended to wither.”
31%
Flag icon
“It was so typical of PARC,” Kay recalled. “If you didn’t know how something was done, you just rolled your own.”
31%
Flag icon
Kay was fond of proclaiming that of the top hundred computer scientists in the country, fifty-six worked at PARC.
31%
Flag icon
“People were accusing us of monopolizing the field,” recalled Jack Goldman. One day at a formal luncheon he was cornered by Jerome Wiesner, the president of MIT. “Wiesner accused me of destroying the ability of universities to teach computing because we were grabbing all the good people.”
31%
Flag icon
“The lights would all be lit and dozens of people around, even it if was nine or ten at night,” he recalled. “Often they were playing computer games. Now, just remember, in those days computer games were not what they are today. This was a new thing. These guys were literally inventing computer games and learning how to use the machine.”
32%
Flag icon
If the computer scientists of PARC had intended to throw down a challenge to those who paid their salaries, they could scarcely have chosen a more provocative way to do so. Xerox had once been a small, scrappy, risk-taking company, but the long years of monopoly had driven that sort of passion clear out of the corridors of power. What had replaced it by 1972 was the sober mentality of professional finance and sales management. There was no room for the unexpected, especially where the corporate image was concerned. Headquarters employed platoons of professional image-polishers to protect the ...more
32%
Flag icon
Yet here was its new multi-million-dollar research center spread out for unsupervised public view in a ratty rock music magazine, with actual Xerox scientists photographed in their T-shirts and jeans, barefooted, lounging self-indulgently in beanbag chairs.
32%
Flag icon
Nevertheless, for the stolid traditionalists who inhabited Xerox headquarters “Spacewar’s” text and pictures inescapably evoked lax morals and California hippiedom.
32%
Flag icon
Within weeks the consequences became concrete. The inmates-running-the-asylum democracy that had prevailed since the founding, particularly on the computer science side, was ended. All employees were issued identification badges and instructed to keep them displayed at all times. The building entrances were outfitted with security stations, where visitors were stopped and handed a nondisclosure pledge to sign. (Quirkily
32%
Flag icon
Xerox also clamped down hard on PARC’s contacts with the media, especially the popular press. Although publication in peer-reviewed technical journals was allowed to continue, the articles were closely vetted by corporate examiners newly aware that there might be developments at PARC worth safeguarding.
32%
Flag icon
A few people tried to make light of the new arrangements. Badges got blown up into T-shirt imprints, so they could be more fashionably worn. One employee turned his into a belt buckle. If the guards and receptionists noted that the ID photographs on others had been artfully pasted over with the heads of Mickey Mouse or the face of George Washington cut from a dollar bill, they never said so.
32%
Flag icon
But the atmosphere at CSL and SSL subtly and permanently changed. In a sense the Rolling Stone flap catalyzed a process that was bound to take place anyway. With MAXC behind them and the computer labs’ head counts approaching critical mass, it was time to recognize that their work was too innovative and important to be any longer the grist of carefree gossip. It w...
This highlight has been truncated due to consecutive passage length restrictions.
32%
Flag icon
Then came Alan Kay, sharing with Stewart Brand’s hip and impressionable readers his assessment of his colleagues as “really a frightening group, by far the best I know of as far as talent and creativity. The people here all are used to dealing lightning with both hands.”
34%
Flag icon
Then there was Taylor’s habit of speaking in parables when he could not articulate his ideas in the precise argot of engineering. “When we were building MAXC, Taylor told Chuck and me a bunch of stuff we couldn’t understand at all at the time,” Lampson recalled in amusement. “We dismissed it as the ravings of a technically illiterate manager. But looking back on it two years later, it was crystal clear what he was trying to tell us to do: Build the Alto.”
34%
Flag icon
His first inspiration was the concept of “microparallel processing.” The basic idea came from a singular aspect of MAXC’s operation—what Ed McCreight had described as “hijacking” the central processing unit. Thanks to a common bottleneck in computer architectures, the processor, or brain, of a typical machine shared access to the computer’s main memory with all the machine’s peripheral devices. Because only one device could be serviced at a time, the processor was often left idle while some other component temporarily monopolized the memory. “While the disk was accessing the memory, for ...more
34%
Flag icon
Thacker reasoned that if each of the computer’s routine tasks could somehow be ranked by urgency and funneled through the processor in appropriate order, he could keep the processor occupied almost full-time.
34%
Flag icon
The gain in efficiency, speed, and hardware was potentially huge. Whole circuit boards that served as the ancillary brains of disk drives and other units could be dispensed with. The Alto’s CPU would be drafted into doing the thinking for all of them.
34%
Flag icon
Thacker’s second crucial inspiration involved the question of how to power a high-performance display without busting the budget on memory. This was not trivial: He understood that the quality of the display would make or break his new computer.
35%
Flag icon
Without this sort of artfulness the Alto display would not have been possible at all. Even within its limits it made severe demands on the machine; its resolution of 606 by 808 pixels meant that nearly a half-million bits needed to be refreshed thirty times per second. (Kay envisioned a one-million-pixel display for his Dynabook, but had to be satisfied with what he got.) Once it was running, however, it made believers out of skeptics. Not the least important of these was Jerry Elkind.
35%
Flag icon
In sum, they seemed to have little in common beyond the Brooks Brothers button-down shirts they both favored (though Boggs preferred yellow and Metcalfe blue). They were the most eccentric partnership PARC ever knew, and the most productive. Working together in mysterious harmony they invented a new way for computers to talk to each other, the great digital party line known as Ethernet.
35%
Flag icon
“But I hated Harvard. At MIT students got to do stuff and at Harvard they didn’t. At MIT you learn by doing because you’re an engineer. At Harvard they want you to be a scientist, and scientists would never soil themselves by doing things.”
36%
Flag icon
But he engaged in it at a level closer to the machine—he was less interested in what could be accomplished by linking computers than in how to actually move the bits from node to node. Finding new ways to make that happen would become his life’s work.
36%
Flag icon
He spent that spring getting wined and dined by prospective employers, eventually landing nine job offers from supplicants that included BBN, Doug Engelbart, and a number of leading universities. The best offer—no surprise—came from Jerry Elkind and Bob Taylor at PARC. Not only was it the most money ($19,000, beating everyone else by several thousand dollars), “but it was the cleanest, most straightforward deal in the world, a high-paying job in a beautiful place with no teaching responsibilities. There was no tenure bullshit and no students, and you got to work with Butler Lampson and Alan ...more
36%
Flag icon
Thacker and Metcalfe, he said later, were locked in what he called a Class One disagreement. “That’s when two people disagree and neither can explain to the other person’s satisfaction that other person’s point of view,” he said. “A Class Two disagreement is when each can explain to the other’s satisfaction the other’s point of view. Class Two disagreements enable people to work together even when they disagree. Class One is destructive.
37%
Flag icon
Over the next few months Metcalfe worked to adapt it to the center’s high-volume, high-performance specifications. He junked the central control computer, Menehune, because each Alto would control its own transmission rate. He designed a scheme by which each station would listen to the line and stop transmitting the instant it heard any interference, instead of continuing to chatter. And rather than transmit via radio, he proposed joining the Altos by some sort of physical line. The key element was that the medium had to be inert. Metcalfe understood that if the line had to carry an electrical ...more
37%
Flag icon
They spent a week or two testing the circuit together for a few hours each day. Debugging a complex electronic device being almost as powerful a bonding experience as, say, serving on a submarine in wartime, Metcalfe learned a lot about his partner: That he was a digital whiz, accomplished at wielding the oscilloscope, and, most interesting, underemployed in his POLOS work.
37%
Flag icon
As a working system Ethernet differed from other PARC inventions in one crucial detail: It was explicitly designed to be imperfect. Metcalfe labeled the network a “best efforts” system—that is, the computers were instructed not to rely on everything working perfectly. This ensured that the system would not crash in the event of a single minor glitch (or even a torrent), of the sort certain to crop up in a network of bug-prone experimental computers. “I loved it,” said Kay, one of its earliest fans. “It was one of the great finesses of all time, an object lesson in how to make something work ...more