Through the Language Glass: Why the World Looks Different in Other Languages
Rate it:
Open Preview
Kindle Notes & Highlights
72%
Flag icon
Today, it is clearer to most linguists that the only languages that can truly reveal what is natural and universal are the hosts of small tribal tongues that do things very differently from what we are used to. So a race against time is now under way to record as many of these languages as possible before all knowledge of them is lost forever.
72%
Flag icon
Recall that Matses requires its speakers to supply detailed information about their source of knowledge for every event they describe. Can the habits of speech induced by such a language have a measurable effect on the speakers’ habits of mind beyond language?
72%
Flag icon
When one hears about acts of extraordinary bravery in combat, it is usually a sign that the battle has not been going terribly well.
72%
Flag icon
Suppose you wanted to understand how a big corporation works and the only thing you were allowed to do was stand outside the headquarters and look at the windows from afar. The sole evidence you had to go on would be in which rooms the lights went on at different times of the day.
73%
Flag icon
If you think this analogy is too gloomy, then remember that the most sophisticated MRI scanners do nothing more than show where the lights are on in the brain.
74%
Flag icon
There are about six million cones in total in the retina, but the three types are not found in nearly equal numbers: there are relatively few short-wave (violet) cones, more than ten times as many middle-wave (green) cones, and even more long-wave cones. The far greater numbers of middle-wave and long-wave cones means that the eye is more efficient in absorbing light at the long-wave half of the spectrum (yellow and red) than at the short-wave half, so it takes lesser intensity of yellow light to be detected by the eye than blue or violet light. In fact, our day vision has a maximum ...more
74%
Flag icon
There is also a different type of unevenness in our sensitivity to colors: our ability to discriminate between fine differences in wavelength is not uniform across the spectrum. We are especially sensitive to wavelength differences in the yellow-green area, and the reason again lies in the accidents of our anatomy. Because the middle-wave (green) and long-wave (yellowish green) receptors are very close in their peak sensitivities, even very small variations in wavelength in the yellow-green area translate into significant changes in the ratios of light absorbed by the two neighboring cones. ...more
74%
Flag icon
When one of the three types of cones fails, this reduces color discrimination to two dimensions instead of three, and the condition is thus called dichromacy. The most frequent type of dichromacy is commonly called red-green blindness. It affects about 8 percent of men and 0.45 percent of women, who lack one of the two neighboring types of cones (long-wave or middle-wave).
75%
Flag icon
As one scientist put it, “with only a little exaggeration, one could say that our trichromatic color vision is a device invented by certain fruiting trees in order to propagate themselves.” In particular, it seems that our trichromatic color vision evolved together with a certain class of tropical trees that bear fruit too large to be taken by birds and that are yellow or orange when ripe. The tree offers a color signal that is visible to the monkey against the masking foliage of the forest, and in return the monkey either spits out the undamaged seed at a distance or defecates it together ...more
« Prev 1 2 Next »