More on this book
Kindle Notes & Highlights
by
D.J. Patil
Read between
September 5 - September 6, 2020
The key is to start simple and stay simple for as long as possible. Ideas for data products tend to start simple and become complex; if they start complex, they become impossible.
The point is to have a conversation rather than just a form. Engage the user to help you, rather than relying on analysis. You’re not just getting the user more involved (which is good in itself), you’re getting clean data that will simplify the work for your back-end systems.
As data scientists, we prefer to interact with the raw data. We know how to import it, transform it, mash it up with other data sources, and visualize it. Most of your customers can’t do that. One of the biggest challenges of developing a data product is figuring out how to give data back to the user.
Take heed not just to demand data. You need to explain to the user why you’re asking for data; you need to disarm the user’s resistance to providing more information by telling him that you’re going to provide value (in this case, more valuable recommendations), rather than abusing the data. It’s essential to remember that you’re having a conversation with the user, rather than giving him a long form to fill out.
80% of the work in any data project is in cleaning the data. If you can come up with strategies for data entry that are inherently clean (such as populating city and state fields from a zip code), you’re much better off. Work done up front in getting clean data will be amply repaid over the course of the project.
The key aspect of making a data product is putting the “product” first and “data” second. Saying it another way, data is one mechanism by which you make the product user-focused. With all products, you should ask yourself the following three questions: What do you want the user to take away from this product? What action do you want the user to take because of the product? How should the user feel during and after using your product?

