The Fabric of Reality: Towards a Theory of Everything (Penguin Science)
Rate it:
Open Preview
1%
Flag icon
They can be understood only by being explained. Fortunately, our best theories embody deep explanations as well as accurate predictions.
1%
Flag icon
Scientific theories explain the objects and phenomena of our experience in terms of an underlying reality which we do not experience directly. But the ability of a theory to explain what we experience is not its most valuable attribute. Its most valuable attribute is that it explains the fabric of reality itself.
2%
Flag icon
Prediction – even perfect, universal prediction – is simply no substitute for explanation.
2%
Flag icon
The overwhelming majority of theories are rejected because they contain bad explanations, not because they fail experimental tests. We reject them without ever bothering to test them. For example, consider the theory that eating a kilogram of grass is a cure for the common cold. That theory makes experimentally testable predictions: if people tried the grass cure and found it ineffective, the theory would be proved false. But it has never been tested and probably never will be, because it contains no explanation – either of how the cure would work, or of anything else. We rightly presume it to ...more
2%
Flag icon
To say that prediction is the purpose of a scientific theory is to confuse means with ends. It is like saying that the purpose of a spaceship is to burn fuel. In fact, burning fuel is only one of many things a spaceship has to do to accomplish its real purpose, which is to transport its payload from one point in space to another. Passing experimental tests is only one of many things a theory has to do to achieve the real purpose of science, which is to explain the world.
2%
Flag icon
For example, you cannot predict what numbers will come up on a fair (i.e. unbiased) roulette wheel. But if you understand what it is in the wheel’s design and operation that makes it fair, then you can explain why predicting the numbers is impossible.
2%
Flag icon
A theory may be superseded by a new theory which explains more, and is more accurate, but is also easier to understand, in which case the old theory becomes redundant, and we gain more understanding while needing to learn less than before. That is what happened when Nicolaus Copernicus’s theory of the Earth travelling round the Sun superseded the complex Ptolemaic system which had placed the Earth at the centre of the universe.
3%
Flag icon
We understand the fabric of reality only by understanding theories that explain it. And since they explain more than we are immediately aware of, we can understand more than we are immediately aware that we understand.
3%
Flag icon
Centuries ago, if you had wanted to build a large structure such as a bridge or a cathedral you would have engaged a master builder. He would have had some knowledge of what it takes to give a structure strength and stability with the least possible expense and effort. He would not have been able to express much of this knowledge in the language of mathematics and physics, as we can today. Instead, he relied mainly on a complex collection of intuitions, habits and rules of thumb, which he had learned from his apprentice-master and then perhaps amended through guesswork and long experience. ...more
This highlight has been truncated due to consecutive passage length restrictions.
4%
Flag icon
Our knowledge, both explicit and inexplicit, is not only much greater than his but structurally different too. As I have said, the modern theories are fewer, more general and deeper. For each situation that the master builder faced while building something in his repertoire – say, when deciding how thick to make a load-bearing wall – he had a fairly specific intuition or rule of thumb, which, however, could give hopelessly wrong answers if applied to novel situations. Today one deduces such things from a theory that is general enough for it to be applied to walls made of any material, in all ...more
4%
Flag icon
That is why, despite understanding incomparably more than an ancient master builder did, a modern architect does not require a longer or more arduous training. A typical theory in a modern student’s syllabus may be harder to understand than any of the master builder’s rules of thumb; but the modern theories are far fewer, and their explanatory power gives them other properties such as beauty, inner logic and connections with other subjects which make them easier to learn. Some of the ancient rules of thumb are now known to be erroneous, while others are known to be true, or to be good ...more
4%
Flag icon
Much of medicine, in other words, is still in the rule-of-thumb era, and when new rules of thumb are discovered there is indeed more incentive for specialization. But as medical and biochemical research comes up with deeper explanations of disease processes (and healthy processes) in the body, understanding is also on the increase. More general concepts are replacing more specific ones as common, underlying molecular mechanisms are found for dissimilar diseases in different parts of the body. Once a disease can be understood as fitting into a general framework, the role of the specialist ...more
4%
Flag icon
Thus the issue of whether it is becoming harder or easier to understand everything that is understood depends on the overall balance between these two opposing effects of the growth of knowledge: the increasing breadth of our theories, and their increasing depth. Breadth makes it harder; depth makes it easier. One thesis of this book is that, slowly but surely, depth is winning. In other words, the proposition that I refused to believe as a child is indeed false, and practically the opposite is true. We are not heading away from a state in which one person could understand everything that is ...more
4%
Flag icon
Given a sufficiently precise description of the initial state of any isolated physical system, it would in principle predict the future behaviour of the system. Where the exact behaviour of a system was intrinsically unpredictable, it would describe all possible behaviours and predict their probabilities. In practice, the initial states of interesting systems often cannot be ascertained very accurately, and in any case the calculation of the predictions would be too complicated to be carried out in all but the simplest cases.
5%
Flag icon
The reductionist conception leads naturally to a classification of subjects and theories in a hierarchy, according to how close they are to the ‘lowest-level’ predictive theories that are known. In this hierarchy, logic and mathematics form the immovable bedrock on which the edifice of science is built. The foundation stone would be a reductive ‘theory of everything’, a universal theory of particles, forces, space and time, together with some theory of what the initial state of the universe was. The rest of physics forms the first few storeys. Astrophysics and chemistry are at a higher level, ...more
5%
Flag icon
The reason why higher-level subjects can be studied at all is that under special circumstances the stupendously complex behaviour of vast numbers of particles resolves itself into a measure of simplicity and comprehensibility. This is called emergence: high-level simplicity ‘emerges’ from low-level complexity.
5%
Flag icon
The purpose of high-level sciences is to enable us to understand emergent phenomena, of which the most important are, as we shall see, life, thought and computation.
7%
Flag icon
The fabric of reality does not consist only of reductionist ingredients like space, time and subatomic particles, but also of life, thought, computation and the other things to which those explanations refer.
7%
Flag icon
Quantum theory is, as I have said, one such theory. But the other three main strands of explanation through which we seek to understand the fabric of reality are all ‘high level’ from the point of view of quantum physics. They are the theory of evolution (primarily the evolution of living organisms), epistemology (the theory of knowledge) and the theory of computation (about computers and what they can and cannot, in principle, compute).