In Bohr’s model of the atom, electrons could change their orbits (or, more precisely, their stable standing wave patterns) only by certain quantum leaps. De Broglie’s thesis helped explain this by conceiving of electrons not just as particles but also as waves. Those waves are strung out over the circular path around the nucleus. This works only if the circle accommodates a whole number—such as 2 or 3 or 4—of the particle’s wavelengths; it won’t neatly fit in the prescribed circle if there’s a fraction of a wavelength left over.

