More on this book
Community
Kindle Notes & Highlights
Read between
May 4 - July 30, 2020
At the Chatou market in Guangzhou, for instance, he had seen storks, seagulls, herons, cranes, deer, alligators, crocodiles, wild pigs, raccoon dogs, flying squirrels, many snakes and turtles, many frogs, as well as domestic dogs and cats, all on sale as food. There were no civets, not when he saw the place; they had already been demonized and purged. The list he recited was just a selection, from memory and from his own discreet inspections, of what food markets were offering then. You could also buy leopard cat, Chinese muntjac, Siberian weasel, Eurasian badger, Chinese bamboo rat, butterfly
...more
SARS in 2003 was an outbreak, not a global pandemic. Eight thousand cases are relatively few, for such an explosive infection; 774 people died, not 7 million. Several factors contributed to limiting the scope and the impact of the outbreak, of which humanity’s good luck was only one. Another was the speed and excellence of the laboratory diagnostics—finding the virus and identifying it—performed by Malik Peiris, Guan Yi, their partners in Hong Kong, and their colleagues and competitors in the United States, China, and Europe. Still another was the brisk efficiency with which cases were
...more
This highlight has been truncated due to consecutive passage length restrictions.
Lyme disease, psittacosis, Q fever: These three differ wildly in their particulars but share two traits in common. They are all zoonotic and they are all bacterial. They stand as reminders that not every bad, stubborn, new bug is a virus.
Over those twenty years, mammal by mammal, tick by tick, Ostfeld and his team collected an enormous body of information, and the work continues. They use Sherman live traps (from the H. B. Sherman company, of Tallahassee, a venerable supplier) baited with oats and set out on the forest floor. They release most of the captured animals alive, after a brief examination to check body condition and remove ticks. Small mammal biologists like him, for whom trap-and-release protocols are the daily routine of data gathering, tend to become highly adept—gentle but efficient—at handling live rodents.
...more
This highlight has been truncated due to consecutive passage length restrictions.
Like an insect, the blacklegged tick undergoes metamorphosis, passing through two immature stages (larva and nymph) on the way to adulthood. At each of those stages, it needs a single blood meal from a vertebrate host to nourish its transmogrification; an adult tick needs another blood meal to supply energy and protein for reproduction. In most cases the vertebrate host is a mammal, though it might also be a lizard, or a ground-nesting bird such as the veery, exposing itself to larval ticks on the forest floor. The blacklegged tick is such a generalist, in fact, that its menu of known hosts
...more
This highlight has been truncated due to consecutive passage length restrictions.
White-tailed deer seem to play a much different role. They are important mainly to adult ticks—not just for their blood, but also for providing a venue where male blacklegged ticks can meet females. A whitetail in the woods of Connecticut, during November, is like a teeming singles’ bar in lower Manhattan on Friday night, crowded with lubricious seekers. One poor doe might be carrying a thousand mature blacklegged ticks. Mating occurs, somewhat gracelessly, when a male tick, prowling across the skin of the deer, encounters a preoccupied female—she is tapped in, drinking, immobile. Don’t look
...more
Borrelia burgdorferi infection doesn’t pass vertically between blacklegged ticks. In plainer language: It is not inherited. Of those million baby ticks, all derived from the female ticks that fed on a single deer, none will be carrying B. burgdorferi when they hatch—not even if every mother tick was infected and the deer was too. The youngsters will come into the world clean and healthy. Each generation of ticks must be infected anew. Generally what seems to happen is that a larval tick acquires the spirochete by taking its blood meal from an infected host—a mouse, a shrew, a whatever. It
...more
“reservoir competence.”47 This is the measure of likelihood that a given host animal, if it’s already infected, will transmit the infection to a feeding tick. Reservoir competence varies from species to species, most likely depending on differences in the strength of immune response against the pathogen. If the immune response is weak and the blood teems with spirochetes, that species will serve as a highly “competent” reservoir of B. burgdorferi, transmitting infection to most ticks that bite it. If the immune response is strong and effective, damping down the level of blood-borne
...more
Say you’re a parent with young children, living here in your Millbrook dream house on three acres of beautiful lawn and shrubbery—what do you want for protection against Lyme disease? There might be a whole range of desperate options. Pesticide spraying by the county? Deer eradication by the state? Thousands of mousetraps (not Shermans but the lethal kind), deployed in the forest and baited with cheese, snapping away like brushfire? Do you pave your yard and ring it with an oil-filled moat? Do you put flea-and-tick collars on your kids’ ankles before they go out to play? No, none of those. “I
...more
This highlight has been truncated due to consecutive passage length restrictions.
The mouse is a good colonizer, a good survivor, a fecund breeder, an opportunist; it is there to stay. Restrained by few predators and few competitors, its population fluctuates around a relatively high average level and, in summers following a big acorn crop, goes much higher still. A plague of mice will infest the little woodland, like rats on the road out of Hamelin. There will also be plenty of ticks. The ticks drink heartily of mouse blood and have a high rate of survival, because white-footed mice (unlike possums, catbirds, or even chipmunks) are not very good at grooming themselves
...more
Why so elusive? Because viruses are vanishingly minuscule, simple but ingenious, anomalous, economical, and in some cases fiendishly subtle. Expert opinion even divides on the conundrum of whether viruses are alive. If they aren’t, then at the very least they’re mechanistic shortcuts on the principle of life itself. They parasitize. They compete. They attack, they evade. They struggle. They obey the same basic imperatives as all living creatures—to survive, to multiply, to perpetuate their lineage—and they do it using intricate strategies shaped by Darwinian natural selection. They evolve. The
...more
Whatever the shape, the interior volume is minuscule. The genomes packed within such small containers are correspondingly limited, ranging from 2,000 nucleotides up to about 1.2 million. The genome of a mouse, by contrast, is about 3 billion nucleotides. It takes three nucleotide bases to specify an amino acid and on average about 250 amino acids to make a protein (though some proteins are much larger). Making proteins is what genes do; everything else in a cell or a virus results from secondary reactions. So a genome of just two thousand code letters, or even thirteen thousand (as for the
...more
Viruses face four basic challenges: how to get from one host to another, how to penetrate a cell within that host, how to commandeer the cell’s equipment and resources for producing multiple copies of itself, and how to get back out—out of the cell, out of the host, on to the next. A virus’s structure and genetic capabilities are shaped parsimoniously to those tasks.
it generally repairs mistakes in the placement of bases as it replicates itself. This repair work is performed by DNA polymerase, the enzyme that helps catalyze construction of new DNA from single strands. If an adenine is mistakenly set in place to become linked with a guanine (not its correct partner), the polymerase recognizes that mistake, backtracks by one pair, fixes the mismatch, and then moves on. So the rate of mutation in most DNA viruses is relatively low. RNA viruses, coded by a single-strand molecule with no such corrective arrangement, no such buddy-buddy system, no such
...more
not every virus is “a piece of bad news wrapped up in a protein”—or at least, it’s not bad news for every host infected. Sometimes the news is merely neutral. Sometimes it’s even good; certain viruses perform salubrious services for their hosts. “Infection” need not always entail any significant damage; the word merely means an established presence of some microbe. A virus doesn’t necessarily achieve anything by making its host sick. Its self-interest requires just replication and transmission. The virus enters cells, yes, and subverts their physiological machinery to make copies of itself,
...more
Beyond the obvious point that it might cause an unknown disease, Engel and Jones-Engel have another reason for studying this virus. “It’s a marker,” Gregory told me. “We caught a marker for transmission,” Lisa echoed. What they meant is that the presence of SFV within a human population marks opportunities having occurred for cross-species infection of all kinds. If simian foamy has made the leap from a half-tame macaque to a person—to several people, maybe to thousands of people passing through sites such as Sangeh—then so could other viruses, their presence still undetected, their effects
...more
To understand why some outbreaks of viral disease go big, others go really big, and still others sputter intermittently or pass away without causing devastation, consider two aspects of a virus in action: transmissibility and virulence. These are crucial parameters, defining and fateful, like speed and mass. Along with a few other factors, they largely determine the gross impact of any outbreak. Neither of the two is an absolute constant; they vary, they’re relative. They reflect the connectedness of a virus to its host and its wider world. They measure situations, not just microbes.
...more
Whatever mode of transmission a virus favors—airborne, oral-fecal, blood-borne, sexual, vertical, or just getting itself passed along in the saliva of a biting mammal, like rabies—the common truth is that this factor doesn’t exist independently. It functions as half of that ecological yin-yang.
Rabies also occurs sometimes in cattle and horses, but you seldom hear about that, probably because herbivores are less likely to pass the infection along with a furious bite. A poor rabid cow may let out a piteous bellow and bump into a wall, but it can’t easily skulk down a village lane, snarling and nipping at bystanders. Reports occasionally filter out of eastern Africa about rabies outbreaks in camels, which are especially worrisome to pastoralists who tend them because of the dromedary’s notorious tendency to bite. One recent dispatch from the northeastern Uganda borderlands told of a
...more
Frank Fenner guessed astutely that it was the dynamic between virulence and transmission. His tests of one grade versus another, using captive rabbits and captive mosquitoes, revealed that the efficiency of transmission correlated with the amount of virus available on a rabbit’s skin. More lesions, or lesions that lasted longer, meant more available virus. More virus smeared on mosquito mouthparts, more chance of transmission to the next rabbit. But “available virus” assumed that the rabbit was still alive, still pumping warm blood, and therefore still of interest to the vector. Dead, cold
...more
This highlight has been truncated due to consecutive passage length restrictions.
R0 = βN/(α + b + v) In English: The evolutionary success of a bug is directly related to its rate of transmission through the host population and inversely but intricately related to its lethality, the rate of recovery from it, and the normal death rate from all other causes. (The clunky imprecision of that sentence is why ecologists prefer math.)
why are RNA genomes so small? Because their self-replication is so fraught with inaccuracies that, given more information to replicate, they would accumulate more errors and cease to function at all. It’s sort of a chicken-and-egg problem, he said. RNA viruses are limited to small genomes because their mutation rates are so high, and their mutation rates are so high because they’re limited to small genomes. In fact, there’s a fancy name for that bind: Eigen’s paradox. Manfred Eigen is a German chemist, a Nobel winner, who has studied the chemical reactions that yield self-organization of
...more
a large fraction of all the scary new viruses I’ve mentioned so far, as well as others I haven’t mentioned, come jumping at us from bats. Hendra: from bats. Marburg: from bats. SARS-CoV: from bats. Rabies, when it jumps into people, comes usually from domestic dogs—because mad dogs get more opportunities than mad wildlife to sink their teeth into humans—but bats are among its chief reservoirs. Duvenhage, a rabies cousin, jumps to humans from bats. Kyasanur Forest virus is vectored by ticks, which carry it to people from several kinds of wildlife, including bats. Ebola, very possibly: from
...more
The Malaysian government in the meantime had ordered a mass culling—that is, the extermination of every pig, infected or uninfected, on every farm that the outbreak had touched. Some of those piggeries had been abandoned by their operators, panicky and bewildered, even before the discovery of the new virus. People in certain areas even fled their homes; Sungai Nipah became a ghost town. By the end of the outbreak, at least 283 humans had been infected and 109 had died, for a case fatality rate of almost 40 percent. Nobody wanted to eat pork, or to handle it, or to buy it. Pigs were left
...more
One possibility is that Field had in mind other potential zoonoses that are simmering, unrecognized, presently harmless to humans, among domesticated animals. How many such bugs may be working their way through large-scale livestock operations around the globe? How many RNA viruses may be achieving high rates of evolution (because they replicate quickly, they mutate often, their populations are big, and the herds are big too) in our factory farms? What are the odds, given such numbers, of a mutation that facilitates spillover? How many other Nipahs are slouching toward Bethlehem to be born?
Bacterial pneumonia, for instance, accounts for about ninety thousand deaths annually just among Bangladeshi children under age five. Bacterial diarrhea kills about twenty thousand newborn infants every year. Given those numbers, I asked Luby, why divert any attention at all to Nipah? To be prudent, he said. Classic case of the devils you know versus the devil you don’t know, none of which can you afford to ignore. Nipah is important because of what might happen and because we understand little about how it might happen. “This is a horrible pathogen,” he said, reminding me that the lethality
...more
The tappers are known as gachis, tree people, from the Bangla word gach, meaning “tree.” Other people own the palms, and the owners typically get a half share of the product. The gachis are poor, independent operators, generally agricultural laborers who do this as a seasonal sideline. To harvest sap, a gachi climbs a tree, shaves away a large patch of bark near the top to create a V-shaped bare patch (from which sap oozes out), places a hollow bamboo tap at the base of the V, and hangs his small clay pot beneath the tap. The sap flows overnight; the pot fills. Just before dawn, the gachi
...more
what is the deal with bats? The paper made a handful of salient points, the first of which put the rest in perspective: Bats come in many, many forms. The order Chiroptera (the “hand-wing” creatures) encompasses 1,116 species, which amounts to 25 percent of all the recognized species of mammals. To say again: One in every four species of mammal is a bat. Such diversity might suggest that bats don’t harbor more than their share of viruses; it could be, instead, that their viral burden is proportional to their share of all mammal diversity, and thus just seems surprisingly large. Maybe their
...more
You’re in a cave in Uganda, surrounded by Marburg and rabies and black forest cobras, wading through a slurry of dead bats, getting hit in the face by live ones like Tippi Hedren in The Birds, and the walls are alive with thirsty ticks, and you can hardly breathe, and you can hardly see, and … you’ve got time to be claustrophobic? “Uganda is not famous for its mine rescue teams,” he said.
Working in one of the CDC’s BSL-4 units, Towner and his co-workers had isolated viable, replicating Marburg virus from five different bats. Furthermore, the five strains of virus were genetically diverse, suggesting an extended history of viral presence and evolution within Egyptian fruit bats. Those data, plus the fragmentary RNA, constituted strong evidence that the Egyptian fruit bat is a reservoir—if not the reservoir—of Marburg virus. Based on the isolation work, it’s definitely there in the bats. Based on the RNA fragments, it seems to infect about 5 percent of the bat population at a
...more
she began talking about susceptible individuals, infected individuals, and recovered individuals in a given bat population. If the population is isolated and insufficiently large, then the virus will move through it, infecting the susceptibles and leaving them recovered (and immune to reinfection), until there are virtually no susceptibles left. Then it will die out, just as measles dies out in an isolated human village. Eventually the virus will return, brought back to that population by a wayward, infected bat. This represents the same blinking-Christmas-light pattern that I invoked with
...more
This highlight has been truncated due to consecutive passage length restrictions.
Nipah was passing horizontally through the community, like a rumor, not just down from the sky, like a divine curse or a dollop of bat poop. And its seeming ubiquity was confirmed by one other finding of the combined response team. This bit of data was especially spooky. The investigators took swabs from the wall of a hospital room in which one of the patients had been treated, five weeks earlier, and from the soiled frame of a bed in which that patient had lain. None of those surfaces had been cleaned in the meantime; bleach and labor were in short supply. Some swabs, both from the wall and
...more
Gaëtan Dugas, the young Canadian flight attendant who became notorious as “Patient Zero.” You’ve heard of him, probably, if you’ve heard much of anything about the dawning of AIDS. Dugas has been written about as the man who “carried the virus out of Africa3 and introduced it into the Western gay community.” He wasn’t. But he seems to have played an oversized and culpably heedless role as a transmitter during the 1970s and early 1980s. As a flight steward, with almost cost-free privileges of personal travel, he flew often between major cities in North America, joining in sybaritic play where
...more
This highlight has been truncated due to consecutive passage length restrictions.
Retroviruses are fiendish beasts, even more devious and persistent than the average virus. They take their name from the capacity to move backward (retro) against the usual expectations of how a creature translates its genes into working proteins. Instead of using RNA as a template for translating DNA into proteins, the retrovirus converts its RNA into DNA within a host cell; its viral DNA then penetrates the cell nucleus and gets itself integrated into the genome of the host cell, thereby guaranteeing replication of the virus whenever the host cell reproduces itself.
The sooty mangabey (Cercocebus atys) is a smoky-gray creature with a dark face and hands, white eyebrows, and flaring white muttonchops, not nearly so decorative as many monkeys on the continent but arresting in its way, like an elderly chimney sweep of dapper tonsorial habits.
Now here’s the part that, as it percolates into your brain, should cause a shudder: Scientists think that each of those twelve groups (eight of HIV-2, four of HIV-1) reflects an independent instance of cross-species transmission. Twelve spillovers. In other words, HIV hasn’t happened to humanity just once. It has happened at least a dozen times—a dozen that we know of, and probably many more times in earlier history. Therefore it wasn’t a highly improbable event. It wasn’t a singular piece of vastly unlikely bad luck, striking humankind with devastating results—like a comet come knuckleballing
...more
base-by-base comparisons between DRC60 and ZR59. It also involved broader comparisons, placing those two within a family tree of known sequences of HIV-1 group M. The point of such comparisons was to see how much evolutionary divergence had occurred. How far had these strains of virus grown apart? Evolutionary divergence accumulates by mutation at the base-by-base level (other ways too, but those aren’t relevant here), and among RNA viruses such as HIV, as I’ve explained, the mutation rate is relatively fast. Equally important, the average rate of HIV-1 mutation is known—or anyway, it can be
...more
For use elsewhere, the urine-screening method wasn’t practical. “Because, you know, nonhabituated chimps don’t stay close enough so you can catch their pee.” You could collect their poop from the forest floor, of course, but fecal samples were useless unless preserved somehow; fresh feces contain an abundance of proteases, digestive enzymes, which would destroy the evidence of viral presence long before you got to your laboratory. These are the constraints within which a molecular biologist studying wild animals labors: the relative availability and other parameters of blood, shit, and piss.
Just outside Mr. Munga’s office, I paused in the corridor to look at a wall poster with lurid illustrations and a warning in French: LA DIARRHEA ROUGE TUE! The red diarrhea kills. At first glance I thought that referred to Ebola, but no. “Grands Singes et VIH/ SIDA,” read the finer print. SIDA is the French acronym for AIDS, and VIH likewise is HIV. The cartoonish but unfunny drawings depicted a stark parable about the connection between simian bushmeat and la diarrhea rouge. I lingered long enough for the oddness to strike me. Throughout the rest of the world you see AIDS-education materials
...more
The chimpanzee’s virus entered his bloodstream. He got a sizable dose. The virus, finding his blood to be not such a different environment from the blood of a chimp, took hold. Okay, I can live here. It did what a retrovirus does: penetrated cells, converted its RNA genome into double-stranded DNA, then penetrated further, into the cells’ nuclei, and inserted itself as DNA in the DNA genome of those host cells. Its primary targets were T cells of the immune system. A certain protein receptor (CD4) on the surface of those cells, in the Cut Hunter, was not very different from the equivalent
...more
because of how the virus generally achieves transmission (blood-to-blood or sexually) and how it doesn’t (through the gastrointestinal tract), quite possibly none of those people received an infectious dose of virus, unless by contact of raw meat with an open cut on the hand or a sore in the mouth. A person might swallow plenty of HIV-1 particles but, if those virions are greeted by stomach acids and not blood, they would likely fail to establish themselves and replicate.
the AIDS pandemic is traceable to a single contingent event. That this event involved a bloody interaction between one chimpanzee and one human. That it occurred in southeastern Cameroon, around the year 1908, give or take. That it led to the proliferation of one strain of virus, now known as HIV-1 group M. That this virus was probably lethal in chimpanzees before the spillover occurred, and that it was certainly lethal in humans afterward. That from southeastern Cameroon it must have traveled downriver, along the Sangha and then the Congo, to Brazzaville and Léopoldville. That from those
...more
Marx’s group even argued that serial passage of HIV through people, by means of such injection campaigns, might have accelerated the evolution of the virus and its adaptation to humans as a host, just as passaging malarial parasites through 170 syphilis patients (remember the crazed Romanian researcher, Mihai Ciuca?) could increase the virulence of Plasmodium knowlesi.
Plasma, the liquid component of blood (minus the cells), is valuable stuff for its antibodies and albumin and clotting factors. Demand for it rose sharply during the period around 1970, and to meet the demand a process called plasmapheresis was developed. Plasmapheresis entails drawing blood from a donor, separating the cells from the plasma by means of filtering or centrifuging, putting the cells back into the donor, and keeping the plasma as a harvested product. One advantage of this process is that it allows donors (who are usually in fact sellers, paid for their trouble and needing the
...more
An entomologist named Alan A. Berryman addressed it some years ago in a paper titled “The Theory and Classification of Outbreaks.” He began with basics: “From the ecological point of view an outbreak1 can be defined as an explosive increase in the abundance of a particular species that occurs over a relatively short period of time.” Then, in the same bland tone, he noted: “From this perspective, the most serious outbreak on the planet earth is that of the species Homo sapiens.” Berryman was alluding, of course, to the rate and the magnitude of human population growth, especially within the
...more
This highlight has been truncated due to consecutive passage length restrictions.
A trillion pounds of cows, fattening in feedlots and grazing on landscapes that formerly supported wild herbivores, are just another form of human impact. They’re a proxy measure of our appetites, and we are hungry. We are prodigious, we are unprecedented. We are phenomenal. No other primate has ever weighed upon the planet to anything like this degree. In ecological terms, we are almost paradoxical: large-bodied and long-lived but grotesquely abundant. We are an outbreak.
He wore round tortoiseshell glasses and a black T-shirt printed with a grotesquely complex integral equation. Above and below the equation, the shirt asked in large letters: WHAT PART OF [this gobbledygook] DON’T YOU UNDERSTAND? The shirt was a metajoke, he explained to me. The gobbledygook was one of Maxwell’s equations; the joke part, of course, was that no average person would understand the thing at all; the meta part, I think, was that Maxwell’s equations are famous but so notoriously abstruse that even a mathematician might not recognize this one. Get it?
The packets of virus lay besmeared on a leaf, left there after the death of a previous caterpillar victim. A healthy caterpillar comes munching along and swallows packets with the leaf tissue. Once inside the caterpillar, a packet unfolds, sinister and orderly, like a MIRV warhead releasing its little nukes over a city. The virions disperse, attacking cells in the caterpillar’s gut. Each virion goes to the cell nucleus (again, hence the name), replicates abundantly, generating new virions that exit the cell and proceed to attack others. “They go from cell to cell, and infect lots and lots of
...more
This highlight has been truncated due to consecutive passage length restrictions.