More on this book
Community
Kindle Notes & Highlights
A stock is the foundation of any system. Stocks are the elements of the system that you can see, feel, count, or measure at any given time. A system stock is just what it sounds like: a store, a quantity, an accumulation of material or information that has built up over time. It may be the water in a bathtub, a population, the books in a bookstore, the wood in a tree, the money in a bank, your own self-confidence. A stock does not have to be physical. Your reserve of good will toward others or your supply of hope that the world can be better are both stocks.
A stock is the memory of the history of changing flows within the system.
Stocks change over time through the actions of a flow. Flows are filling and draining, births and deaths, purchases and sales, growth and decay, deposits and withdrawals, successes and failures. A stock, then, is the present memory of the history of changing flows within the system.
If you understand the dynamics of stocks and flows—their behavior over time—you understand a good deal about the behavior of complex systems. And if you have had much experience with a bathtub, you understand the dynamics of stocks and flows.
Systems thinkers use graphs of system behavior to understand trends over time, rather than focusing attention on individual events. We also use behavior-over-time graphs to learn whether the system is approaching a goal or a limit, and if so, how quickly.
The amount of water in the tub stays constant at whatever level it had reached when the inflow became equal to the outflow. It is in a state of dynamic equilibrium—its level does not change, although water is continuously flowing through it.
All models, whether mental models or mathematical models, are simplifications of the real world. You know all the dynamic possibilities of this bathtub. From it you can deduce several important principles that extend to more complicated systems: As long as the sum of all inflows exceeds the sum of all outflows, the level of the stock will rise. As long as the sum of all outflows exceeds the sum of all inflows, the level of the stock will fall. If the sum of all outflows equals the sum of all inflows, the stock level will not change; it will be held in dynamic equilibrium at whatever level it
...more
A stock can be increased by decreasing its outflow rate as well as by increasing its inflow rate. There’s more than one way to fill a bathtub!
Stocks usually change slowly. They can act as delays, lags, buffers, ballast, and sources of momentum in a system. Stocks, especially large ones, respond to change, even sudden change, only by gradual filling or emptying.
Stocks generally change slowly, even when the flows into or out of them change suddenly. Therefore, stocks act as delays or buffers or shock absorbers in systems.
An economy cannot build up a large stock of functioning factories and highways and electric plants overnight, even if a lot of money is available. Once an economy has a lot of oil-burning furnaces and automobile engines, it cannot change quickly to furnaces and engines that burn a different fuel, even if the price of oil suddenly changes.
The time lags that come from slowly changing stocks can cause problems in systems, but they also can be sources of stability. Soil that has accumulated over centuries rarely erodes all at once. A population that has learned many skills doesn’t forget them immediately. You can pump groundwater faster than the rate it recharges for a long time before the aquifer is drawn down far enough to be damaged. The time lags imposed by stocks allow room to maneuver, to experiment, and to revise policies that aren’t working.
If you have a sense of the rates of change of stocks, you don’t expect things to happen faster than they can happen. You don’t give up too soon. You can use the opportunities presented by a system’s momentum to guide it toward a good outcome—much as a judo expert uses the momentum of an opponent to achieve his or her own goals.
Stocks allow inflows and outflows to be decoupled and to be independent and temporarily out of balance with each other.
Human beings have invented hundreds of stock-maintaining mechanisms to make inflows and outflows independent and stable. Reservoirs enable residents and farmers downriver to live without constantly adjusting their lives and work to a river’s varying flow, especially its droughts and floods. Banks enable you temporarily to earn money at a rate different from how you spend. Inventories of products along a chain from distributors to wholesalers to retailers allow production to proceed smoothly although customer demand varies, and allow customer demand to be filled even though production rates
...more
If inventories rise too high, then prices are cut or advertising budgets are increased, so that sales will go up and inventories will fall. If the stock of food in your kitchen gets low, you go to the store. As the stock of growing grain rises or fails to rise in the fields, farmers decide whether to apply water or pesticide, grain companies decide how many barges to book for the harvest, speculators bid on future values of the harvest, cattle growers build up or cut down their herds. Water levels in reservoirs cause all sorts of corrective actions if they rise too high or fall too low. The
...more
Systems thinkers see the world as a collection of stocks along with the mechanisms for regulating the levels in the stocks by manipulating flows.
Systems of information-feedback control are fundamental to all life and human endeavor, from the slow pace of biological evolution to the launching of the latest space satellite.… Everything we do as individuals, as an industry, or as a society is done in the context of an information-feedback system. —Jay W. Forrester3
When a stock grows by leaps and bounds or declines swiftly or is held within a certain range no matter what else is going on around it, it is likely that there is a control mechanism at work. In other words, if you see a behavior that persists over time, there is likely a mechanism creating that consistent behavior. That mechanism operates through a feedback loop. It is the consistent behavior pattern over a long period of time that is the first hint of the existence of a feedback loop.
A feedback loop is formed when changes in a stock affect the flows into or out of that same stock. A feedback loop can be quite simple and direct.
Feedback loops can cause stocks to maintain their level within a range or grow or decline. In any case, the flows into or out of the stock are adjusted because of changes in the size of the stock itself. Whoever or whatever is monitoring the stock’s level begins a corrective process, adjusting rates of inflow or outflow (or both) and so changing the stock’s level. The stock level feeds back through a chain of signals and actions to control itself.
Not all systems have feedback loops. Some systems are relatively simple open-ended chains of stocks and flows. The chain may be affected by outside factors, but the levels of the chain’s stocks don’t affect its flows. However, those systems that contain feedback loops are common and may be quite elegant or rather surprising, as we shall see.
A feedback loop is a closed chain of causal connections from a stock, through a set of decisions or rules or physical laws or actions that are dependent on the level of the stock, and back again through a flow to change the stock.
That’s because feedback loops often can operate in two directions. In this case, the feedback loop can correct an oversupply as well as an undersupply. If you drink too much coffee and find yourself bouncing around with extra energy, you’ll lay off the caffeine for a while. High energy creates a discrepancy that says “too much,” which then causes you to reduce your coffee intake until your energy level settles down. The diagram is intended to show that the loop works to drive the stock of energy in either direction.
Remember—all system diagrams are simplifications of the real world. We each choose how much complexity to look at.
I did that to indicate that there is more to the system than one simple loop. As every coffee drinker knows, caffeine is only a short-term stimulant. It lets you run your motor faster, but it doesn’t refill your personal fuel tank. Eventually the caffeine high wears off, leaving the body more energy-deficient than it was before. That drop could reactivate the feedback loop and generate another trip to the coffee pot. (See the discussion of addiction later in this book.) Or it could activate some longer-term and healthier feedback responses: Eat some food, take a walk, get some sleep.
Balancing feedback loops are goal-seeking or stability-seeking. Each tries to keep a stock at a given value or within a range of values. A balancing feedback loop opposes whatever direction of change is imposed on the system. If you push a stock too far up, a balancing loop will try to pull it back down. If you shove it too far down, a balancing loop will try to bring it back up.
Here’s another balancing feedback loop that involves coffee, but one that works through physical law rather than human decision. A hot cup of coffee will gradually cool down to room temperature. Its rate of cooling depends on the difference between the temperature of the coffee and the temperature of the room. The greater the difference, the faster the coffee will cool. The loop works the other way too—if you make iced coffee on a hot day, it will warm up until it has the same temperature as the room. The function of this system is to bring the discrepancy between coffee’s temperature and
...more
Balancing feedback loops are equilibrating or goal-seeking structures in systems and are both sources of stability and sources of resistance to change.
The presence of a feedback mechanism doesn’t necessarily mean that the mechanism works well. The feedback mechanism may not be strong enough to bring the stock to the desired level. Feedbacks—the interconnections, the information part of the system—can fail for many reasons. Information can arrive too late or at the wrong place. It can be unclear or incomplete or hard to interpret. The action it triggers may be too weak or delayed or resource-constrained or simply ineffective. The goal of the feedback loop may never be reached by the actual stock.
Reinforcing loops are found wherever a system element has the ability to reproduce itself or to grow as a constant fraction of itself. Those elements include populations and economies. Remember the example of the interest-bearing bank account? The more money you have in the bank, the more interest you earn, which is added to the money already in the bank, where it earns even more interest.
Reinforcing feedback loops are self-enhancing, leading to exponential growth or to runaway collapses over time. They are found whenever a stock has the capacity to reinforce or reproduce itself.
The more you make, the more capacity you have to make even more. This reinforcing feedback loop is the central engine of growth in an economy.
By now you may be seeing how basic balancing and reinforcing feedback loops are to systems. Sometimes I challenge my students to try to think of any human decision that occurs without a feedback loop—that is, a decision that is made without regard to any information about the level of the stock it influences. Try thinking about that yourself. The more you do, the more you’ll begin to see feedback loops everywhere.
Watch out! If you see feedback loops everywhere, you’re already in danger of becoming a systems thinker!
The concept of feedback opens up the idea that a system can cause its own behavior. So far, I have limited this discussion to one kind of feedback loop at a time. Of course, in real systems feedback loops rarely come singly. They are linked together, often in fantastically complex patterns. A single stock is likely to have several reinforcing and balancing loops of differing strengths pulling it in several directions.
A single flow may be adjusted by the contents of three or five or twenty stocks. It may fill one stock while it drains another and feeds into decisions that alter yet another. The many feedback loops in a system tug against each other, trying to make stocks grow, die off, or come into balance with each other. As a result, complex systems do much more than stay steady or explode exponentially or approach goals smoothly—as we shall see.
The … goal of all theory is to make the … basic elements as simple and as few as possible without having to surrender the adequate representation of … experience. —Albert Einstein,1 physicist
One good way to learn something new is through specific examples rather than abstractions and generalities, so here are several common, simple but important examples of systems that are useful to understand in their own right and that will illustrate many general principles of complex systems.
And my preferred way of learning something new. Examples and use cases first, then abstractions and generalities once I’ve seen these things in practice.
This collection has some of the same strengths and weaknesses as a zoo.2 It gives you an idea of the large variety of systems that exist in the world, but it is far from a complete representation of that variety. It groups the animals by family—monkeys here, bears there (single-stock systems here, two-stock systems there)—so you can observe the characteristic behaviors of monkeys, as opposed to bears. But, like a zoo, this collection is too neat. To make the animals visible and understandable, it separates them from each other and from their normal concealing environment. Just as zoo animals
...more
The assumption is that room insulation is not perfect, and so some heat leaks out of the warm room to the cool outdoors. The better the insulation, the slower the drop in temperature would be. Now, what happens when these two loops operate at the same time? Assuming that there is sufficient insulation and a properly sized furnace, the heating loop dominates the cooling loop.
There’s an important general principle here, and also one specific to the thermostat structure. First the general one: The information delivered by a feedback loop can only affect future behavior; it can’t deliver the information, and so can’t have an impact fast enough to correct behavior that drove the current feedback. A person in the system who makes a decision based on the feedback can’t change the behavior of the system that drove the current feedback; the decisions he or she makes will affect only future behavior.
The information delivered by a feedback loop—even nonphysical feedback—can only affect future behavior; it can’t deliver a signal fast enough to correct behavior that drove the current feedback. Even nonphysical information takes time to feedback into the system.
In the bathtub, it takes a split second of time to assess the depth of the water and decide to adjust the flows. Many economic models make a mistake in this matter by assuming that consumption or production can respond immediately, say, to a change in price. That’s one of the reasons why real economies tend not to behave exactly like many economic models. The specific principle you can deduce from this simple system is that you must remember in thermostat-like systems to take into account whatever draining or filling processes are going on. If you don’t, you won’t achieve the target level of
...more
A stock-maintaining balancing feedback loop must have its goal set appropriately to compensate for draining or inflowing processes that affect that stock. Otherwise, the feedback process will fall short of or exceed the target for the stock.
Every balancing feedback loop has its breakdown point, where other loops pull the stock away from its goal more strongly than it can pull back. That can happen in this simulated thermostat system, if I weaken the power of the heating loop (a smaller furnace that cannot put out as much heat), or if I strengthen the power of the cooling loop (colder outside temperature, less insulation, or larger leaks).
A population has a reinforcing loop causing it to grow through its birth rate, and a balancing loop causing it to die off through its death rate.
As long as fertility and mortality are constant (which in real systems they rarely are), this system has a simple behavior. It grows exponentially or dies off, depending on whether its reinforcing feedback loop determining births is stronger than its balancing feedback loop determining deaths.
This behavior is an example of shifting dominance of feedback loops. Dominance is an important concept in systems thinking. When one loop dominates another, it has a stronger impact on behavior. Because systems often have several competing feedback loops operating simultaneously, those loops that dominate the system will determine the behavior.
Complex behaviors of systems often arise as the relative strengths of feedback loops shift, causing first one loop and then another to dominate behavior.