What is Life? (Canto Classics)
Rate it:
Open Preview
Read between May 29 - September 13, 2022
31%
Flag icon
What is amazing is how enormously the time of expectation depends on comparatively small changes of the ratio W:kT. To give an example (following Delbrück): for W 30 times kT the time of expectation might be as short as s., but would rise to 16 months when W is 50 times kT, and to 30,000 years when W is 60 times kT!
31%
Flag icon
The reason is that the time of expectation, call it t, depends on the ratio W/kT by an exponential function, thus
31%
Flag icon
the quantum jump which we called the ‘lift’ leads, if not to a complete disintegration, at least to an essentially different configuration of the same atoms – an isomeric molecule, as the chemist would say, that is, a molecule composed of the same atoms in a different arrangement (in the application to biology it is going to represent a different ‘allele’ in the same locus’ and the quantum jump will represent a mutation).
32%
Flag icon
It is known to the chemist that the same group of atoms can unite in more than one way to form a molecule. Such molecules are called isomeric
33%
Flag icon
For, when they occur, they are almost immediately followed by a relapse into the initial state, since nothing prevents their return.
33%
Flag icon
From these facts emerges a very simple answer to our question, namely: Are these structures, composed of comparatively few atoms, capable of withstanding for long periods the disturbing influence of heat motion to which the hereditary substance is continually exposed?
34%
Flag icon
The Heitler–London bondage is a unique, singular feature of the theory, not invented for the purpose of explaining the chemical bond.
34%
Flag icon
we may safely assert that there is no alternative to the molecular explanation of the hereditary substance. The physical aspect leaves no other possibility to account for its permanence. If the Delbrück picture should fail, we would have to give up further attempts. That is the first point I wish to make.
35%
Flag icon
atoms forming a molecule, whether there be few or many of them, are united by forces of exactly the same nature as the numerous atoms which build up a true solid, a crystal. The molecule presents the same solidity of structure as a crystal. Remember that it is precisely this solidity on which we draw to account for the permanence of the gene!
36%
Flag icon
small molecule might be called ‘the germ of a solid’. Starting from such a small solid germ, there seem to be two different ways of building up larger and larger associations. One is the comparatively dull way of repeating the same structure in three directions again and again. That is the way followed in a growing crystal. Once the periodicity is established, there is no definite limit to the size of the aggregate. The other way is that of building up a more and more extended aggregate without the dull device of repetition. That is the case of the more and more complicated organic molecule in ...more
36%
Flag icon
It has often been asked how this tiny speck of material, the nucleus of the fertilized egg, could contain an elaborate code-script involving all the future development of the organism. A well-ordered association of atoms, endowed with sufficient resistivity to keep its order permanently, appears to be the only conceivable material structure that offers a variety of possible (‘isomeric’) arrangements, sufficiently large to embody a complicated system of ‘determinations’ within a small spatial boundary. Indeed, the number of atoms in such a structure need not be very large to produce an almost ...more
36%
Flag icon
What we wish to illustrate is simply that with the molecular picture of the gene it is no longer inconceivable that the miniature code should precisely correspond with a highly complicated and specified plan of development and should somehow contain the means to put it into operation.
37%
Flag icon
for we recall from p. 51 that thresholds varying within a range of about 1:2 will account for lifetimes ranging from a fraction of a second to tens of thousands of years.
37%
Flag icon
These considerations make it conceivable that an isomeric change of configuration in some part of our molecule, produced by a chance fluctuation of the vibrational energy, can actually be a sufficiently rare event to be interpreted as a spontaneous mutation. Thus we account, by the very principles of quantum mechanics, for the most amazing fact about mutations, the fact by which they first attracted de Vries’s attention, namely, that they are ‘jumping’ variations, no intermediate forms occurring.
37%
Flag icon
Having discovered the increase of the natural mutation rate by any kind of ionizing rays, one might think of attributing the natural rate to the radio-activity of the soil and air and to cosmic radiation. But a quantitative comparison with the X-ray results shows that the ‘natural radiation’ is much too weak and could account only for a small fraction of the natural rate. Granted that we have to account for the rare natural mutations by chance fluctuations of the heat motion, we must not be very much astonished that Nature has succeeded in making such a subtle choice of threshold values as is ...more
38%
Flag icon
The time of expectation is diminished by raising the temperature, the mutability is increased.
38%
Flag icon
The low mutability of wild genes was distinctly increased, but the comparatively high mutability occurring with some of the already mutated genes was not, or at any rate was much less, increased. That is just what we expect on comparing our two formulae. A large value of W/kT, which according to the first formula is required to make t large (stable gene), will, according to the second one, make for a small value of the ratio computed there, that is to say for a considerable increase of mutability with temperature.
40%
Flag icon
From Delbrück’s general picture of the hereditary substance it emerges that living matter, while not eluding the ‘laws of physics’ as established up to date, is likely to involve ‘other laws of physics’ hitherto unknown, which, however, once they have been revealed, will form just as integral a part of this science as the former.
40%
Flag icon
But, to reconcile the high durability of the hereditary substance with its minute size, we had to evade the tendency to disorder by ‘inventing the molecule’, in fact, an unusually large molecule which has to be a masterpiece of highly differentiated order, safeguarded by the conjuring rod of quantum theory. The laws of chance are not invalidated by this ‘invention’, but their outcome is modified. The physicist is familiar with the fact that the classical laws of physics are modified by quantum theory, especially at low temperature. There are many instances of this. Life seems to be one of ...more
40%
Flag icon
The non-physicist finds it hard to believe that really the ordinary laws of physics, which he regards as the prototype of inviolable precision, should be based on the statistical tendency of matter to go over into disorder. I have given examples in chapter 1. The general principle involved is the famous Second Law of Thermodynamics (entropy principle) and its equally famous statistical foundation. On pp. 69–74 I will try to sketch the bearing of the entropy principle on the large-scale behaviour of a living organism – forgetting at the moment all that is known about chromosomes, inheritance, ...more
41%
Flag icon
What is the characteristic feature of life? When is a piece of matter said to be alive? When it goes on ‘doing something’, moving, exchanging material with its environment, and so forth, and that for a much longer period than we would expect an inanimate piece of matter to ‘keep going’ under similar circumstances. When a system that is not alive is isolated or placed in a uniform environment, all motion usually comes to a standstill very soon as a result of various kinds of friction; differences of electric or chemical potential are equalized, substances which tend to form a chemical compound ...more
41%
Flag icon
How does the living organism avoid decay? The obvious answer is: By eating, drinking, breathing and (in the case of plants) assimilating. The technical term is metabolism. The Greek word () means change or exchange. Exchange of what?
41%
Flag icon
What then is that precious something contained in our food which keeps us from death? That is easily answered. Every process, event, happening – call it what you will; in a word, everything that is going on in Nature means an increase of the entropy of the part of the world where it is going on. Thus a living organism continually increases its entropy – or, as you may say, produces positive entropy – and thus tends to approach the dangerous state of maximum entropy, which is death. It can only keep aloof from it, i.e. alive, by continually drawing from its environment negative entropy – which ...more
42%
Flag icon
The gradual ‘spreading out’ of the sugar over all the water available increases the disorder D), and hence (since the logarithm of D increases with D) the entropy. It is also pretty clear that any supply of heat increases the turmoil of heat motion, that is to say, increases D and thus increases the entropy; it is particularly clear that this should be so when you melt a crystal, since you thereby destroy the neat and permanent arrangement of the atoms or molecules and turn the crystal lattice into a continually changing random distribution.
43%
Flag icon
How would we express in terms of the statistical theory the marvellous faculty of a living organism, by which it delays the decay into thermodynamical equilibrium (death)? We said before: ‘It feeds upon negative entropy’, attracting, as it were, a stream of negative entropy upon itself, to compensate the entropy increase it produces by living and thus to maintain itself on a stationary and fairly low entropy level.
43%
Flag icon
Hence the awkward expression ‘negative entropy’ can be replaced by a better one: entropy, taken with the negative sign, is itself a measure of order. Thus the device by which an organism maintains itself stationary at a fairly high level of orderliness ( = fairly low level of entropy) really consists in continually sucking orderliness from its environment. This conclusion is less paradoxical than it appears at first sight. Rather could it be blamed for triviality. Indeed, in the case of higher animals we know the kind of orderliness they feed upon well enough, viz. the extremely well-ordered ...more
43%
Flag icon
paradoxical than it appears at first sight. Rather could it be blamed for triviality.
44%
Flag icon
Energy is needed to replace not only the mechanical energy of our bodily exertions, but also the heat we continually give off to the environment. And that we give off heat is not accidental, but essential. For this is precisely the manner in which we dispose of the surplus entropy we continually produce in our physical life process.
45%
Flag icon
The unfolding of events in the life cycle of an organism exhibits an admirable regularity and orderliness, unrivalled by anything we meet with in inanimate matter. We find it controlled by a supremely well-ordered group of atoms, which represent only a very small fraction of the sum total in every cell. Moreover, from the view we have formed of the mechanism of mutation we conclude that the dislocation of just a few atoms within the group of ‘governing atoms’ of the germ cell suffices to bring about a well-defined change in the large-scale hereditary characteristics of the organism.
45%
Flag icon
Even when the chemist handles a very complicated molecule in vitro he is always faced with an enormous number of like molecules. To them his laws apply. He might tell you, for example, that one minute after he has started some particular reaction half of the molecules will have reacted, and after a second minute three-quarters of them will have done so. But whether any particular molecule, supposing you could follow its course, will be among those which have reacted or among those which are still untouched, he could not predict. That is a matter of pure chance.
45%
Flag icon
is not that we can never observe the fate of a single small group of atoms or even of a single atom. We can, occasionally. But whenever we do, we find complete irregularity, co-operating to produce regularity only on the average.
45%
Flag icon
The Brownian movement of a small particle suspended in a liquid is completely irregular. But if there are many similar particles, they will by their irregular movement give rise to the regular phenomenon of diffusion.
46%
Flag icon
Since we know the power this tiny central office has in the isolated cell, do they not resemble stations of local government dispersed through the body, communicating with each other with great ease, thanks to the code that is common to all of them?
46%
Flag icon
However, it needs no poetical imagination but only clear and sober scientific reflection to recognize that we are here obviously faced with events whose regular and lawful unfolding is guided by a ‘mechanism’ entirely different from the ‘probability mechanism’ of physics. For it is simply a fact of observation that the guiding principle in every cell is embodied in a single atomic association existing only in one copy (or sometimes two) – and a fact of observation that it results in producing events which are a paragon of orderliness.
46%
Flag icon
Whether we find it astonishing or whether we find it quite plausible that a small but highly organized group of atoms be capable of acting in this manner, the situation is unprecedented, it is unknown anywhere else except in living matter.
46%
Flag icon
The orderliness encountered in the unfolding of life springs from a different source. It appears that there are two different ‘mechanisms’ by which orderly events can be produced: the ‘statistical mechanism’ which produces ‘order from disorder’ and the new one, producing ‘order from order’. To the unprejudiced mind the second principle appears to be much simpler, much more plausible. No doubt it
47%
Flag icon
We must therefore not be discouraged by the difficulty of interpreting life by the ordinary laws of physics. For that is just what is to be expected from the knowledge we have gained of the structure of living matter. We must be prepared to find a new type of physical law prevailing in it. Or are we to term it a non-physical, not to say a super-physical, law?
47%
Flag icon
In short, all purely mechanical events seem to follow distinctly and directly the ‘order-from-order’ principle.
47%
Flag icon
The object of that paper was to show how the interesting statistical type of law, controlling large-scale events, is constituted from the ‘dynamical’ laws supposed to govern the small-scale events, the interaction of the single atoms and molecules. The latter type is illustrated by large-scale mechanical phenomena, as the motion of the planets or of a clock, etc.
47%
Flag icon
We seem to arrive at the ridiculous conclusion that the clue to the understanding of life is that it is based on a pure mechanism, a ‘clock-work’ in the sense of Planck’s paper. The conclusion is not ridiculous and is, in my opinion, not entirely wrong, but it has to be taken ‘with a very big grain of salt’.
48%
Flag icon
Nevertheless the fact remains that ‘physical clock-works’ visibly display very prominent ‘order-from-order’ features – the type that aroused the physicist’s excitement when he encountered them in the organism. It seems likely that the two cases have after all something in common. It remains to be seen what this is and what is the striking difference which makes the case of the organism after all novel and unprecedented.
48%
Flag icon
When does a physical system – any kind of association of atoms – display ‘dynamical law’ (in Planck’s meaning) or ‘clock-work features’? Quantum theory has a very short answer to this question, viz. at the absolute zero of temperature. As zero temperature is approached the molecular disorder ceases to have any bearing on physical events.
49%
Flag icon
Clockworks are capable of functioning ‘dynamically’, because they are built of solids, which are kept in shape by London–Heitler forces, strong enough to elude the disorderly tendency of heat motion at ordinary temperature.
49%
Flag icon
The most striking features are: first, the curious distribution of the cogs in a many-celled organism, for which I may refer to the somewhat poetical description on p. 79; and secondly, the fact that the single cog is not of coarse human make, but is the finest masterpiece ever achieved along the lines of the Lord’s quantum mechanics.
50%
Flag icon
To the physicist I wish to emphasize that in my opinion, and contrary to the opinion upheld in some quarters, quantum indeterminacy plays no biologically relevant role in them,
50%
Flag icon
The only possible inference from these two facts is, I think, that I – I in the widest meaning of the word, that is to say, every conscious mind that has ever said or felt ‘I’ – am the person, if any, who controls the ‘motion of the atoms’ according to the Laws of Nature.
50%
Flag icon
From the early great Upanishads the recognition ATHMAN = BRAHMAN (the personal self equals the omnipresent, all-comprehending eternal self) was in Indian thought considered, far from being blasphemous, to represent the quintessence of deepest insight into the happenings of the world. The striving of all the scholars of Vedanta was, after having learnt to pronounce with their lips, really to assimilate in their minds this grandest of all thoughts.
50%
Flag icon
the mystics of many centuries, independently, yet in perfect harmony with each other (somewhat like the particles in an ideal gas) have described, each of them, the unique experience of his or her life in terms that can be condensed in the phrase: DEUS FACTUS SUM (I have become God).
50%
Flag icon
and in spite of those true lovers who, as they look into each other’s eyes, become aware that their thought and their joy are numerically one – not merely similar or identical; but they, as a rule, are emotionally too busy to indulge in clear thinking, in which respect they very much resemble the mystic.
51%
Flag icon
How does the idea of plurality (so emphatically opposed by the Upanishad writers) arise at all? Consciousness finds itself intimately connected with, and dependent on, the physical state of a limited region of matter, the body. (Consider the changes of mind during the development of the body, as puberty, ageing, dotage, etc., or consider the effects of fever, intoxication, narcosis, lesion of the brain and so on.) Now, there is a great plurality of similar bodies. Hence the pluralization of consciousnesses or minds seems a very suggestive hypothesis.