More on this book
Community
Kindle Notes & Highlights
Read between
June 17 - August 8, 2019
recent discoveries about the role of epigenetic information in animal development pose a formidable challenge to the standard neo-Darwinian account of the origin of these body plans—perhaps the most formidable of all.
neo-Darwinism lacks an explanation for the origin of organismal form precisely because it cannot explain the origin of epigenetic information.
I asked Wells why developmental biology was so important to evolutionary theory and to assessing neo-Darwinism. I’ll never forget his reply. “Because” he said, “that’s where the whole theory is going to unravel.”
Shannon information
The arrangements of nucleotides in DNA or of amino acids in a protein are highly improbable and thus contain large amounts of Shannon information.
Similarly, animal body plans represent, not only highly improbable, but also highly specific arrangements of matter. Organismal form and function depend upon the precise arrangement of various constituents as they arise during, or contribute to, embryological development.
Perhaps because the information-carrying capacity of the gene can be so easily measured, biologists have often treated DNA, RNA, and proteins as the sole repositories of biological information. Neo-Darwinists have assumed that genes possess all the information necessary to specify the form of an animal. They have also assumed that mutations in genes will suffice to generate the new information necessary to build a new form of animal life.
Many biologists no longer believe that DNA directs virtually everything happening within the cell. Developmental biologists, in particular, are now discovering more and more ways that crucial information for building body plans is imparted by the form and structure of embryonic cells, including information from both the unfertilized and fertilized egg.
Other sources of information must help arrange individual proteins into systems of proteins, systems of proteins into distinctive cell types, cell types into tissues, and different tissues into organs. And different organs and tissues must be arranged to form body plans.
Two analogies may help clarify the point. At a construction site, builders will make use of many materials: lumber, wires, nails, drywall, piping, and windows. Yet building materials do not determine the floor plan of the house or the arrangement of houses in a neighborhood.
Eukaryotic cells have internal skeletons to give them shape and stability. These “cytoskeletons” are made of several different kinds of filaments including those called the “microtubules.” The structure and location of the microtubules in the cytoskeleton influence the patterning and development of embryos. Microtubule “arrays” within embryonic cells help to distribute essential proteins used during development to specific locations in these cells. Once delivered, these proteins perform functions critical to development, but they can only do so if they are delivered to their correct locations
...more
This highlight has been truncated due to consecutive passage length restrictions.
Another cell structure influences the arrangement of the microtubule arrays and thus the precise structures they form and the functions they perform. In an animal cell, that structure is called the centrosome (literally, “central body”), a microscopic organelle that sits next to the nucleus between cell divisions in an undividing cell. Emanating from the centrosome is the microtubule array that gives a cell its three-dimensional shape and provides internal tracks for the directed transport of organelles and essential molecules to and from the nucleus.16 During cell division the centrosome
...more
When messenger RNAs are transcribed, their protein products must be transported to the proper locations in embryonic cells in order to function properly. Directed transport involves the cytoskeleton, but it also depends on spatially localized targets in the membrane that are in place before transport occurs. Developmental biologists have shown that these membrane patterns play a crucial role in the embryological development of fruit flies.
For example, early embryo development in the fruit fly Drosophila melanogaster requires the regulatory molecules Bicoid and Nanos (among others). The former is required for anterior (head) development, and the latter is required for posterior (tail) development.19 In the early stages of embryological development, nurse cells pump Bicoid and Nanos RNAs into the egg. (Nurse cells provide the cell that will become the egg—known as the oocyte—and the embryo with maternally encoded messenger RNAs and proteins.) Cytoskeletal arrays then transport these RNAs through the oocyte, where they become
...more
This highlight has been truncated due to consecutive passage length restrictions.
Membrane patterns can also provide epigenetic information by the precise arrangement of ion channels—openings in the cell wall through which charged electrical particles pass in both directions. For example, one type of channel uses a pump powered by the energy-rich molecule ATP to transport three sodium ions out of the cell for every two potassium ions that enter the cell. Since both ions have a charge of plus one (Na+, K+), the net difference sets up an electromagnetic field across the cell membrane.21 Experiments have shown that electromagnetic fields have “morphogenetic” effects—in other
...more
the spatial arrangement and distribution of these ion channels influences the development of the animal.
Biologists know of an additional source of epigenetic information stored in the arrangement of sugar molecules on the exterior surface of the cell membrane. Sugars can be attached to the lipid molecules that make up the membrane itself (in which case they are called “glycolipids”), or they can be attached to the proteins embedded in the membrane (in which case they are called “glycoproteins”). Since simple sugars can be combined in many more ways than amino acids, which make up proteins, the resulting cell surface patterns can be enormously complex. As biologist Ronald Schnaar explains, “Each
...more
This highlight has been truncated due to consecutive passage length restrictions.
These different sources of epigenetic information in embryonic cells pose an enormous challenge to the sufficiency of the neo-Darwinian mechanism. According to neo-Darwinism, new information, form, and structure arise from natural selection acting on random mutations arising at a very low level within the biological hierarchy—within the genetic text. Yet both body-plan formation during embryological development and major morphological innovation during the history of life depend upon a specificity of arrangement at a much higher level of the organizational hierarchy, a level that DNA alone
...more
This highlight has been truncated due to consecutive passage length restrictions.
in at least the case of the sugar molecules on the cell surface, gene products play no direct role. Genetic information produces proteins and RNA molecules, not sugars and carbohydrates.
More important, the location of specific sugar molecules on the exterior surface of embryonic cells plays a critical role in the function that these sugar molecules play in intercellular communication and arrangement. Yet their location is not determined by the genes that code for the proteins to which these sugar molecules might be attached. Instead, research suggests that protein patterns in the cell membrane are transmitted directly from parent membrane to daughter membrane during cell division rather than as a result of gene expression in each new generation of cells.29 Since the sugar
...more
Finally, it is not only the molecular structure of these membrane targets, but also their specific location and distribution that determines their function. Yet the location of these targets on the inner surface of the cell is not determined by the gene products out of which they are made any more than, for example, the locations of the bridges across the River Seine in Paris are determined by the properties of the stones out of which they are made. Similarly, the sodium-potassium ion pumps in cell membranes are indeed made of proteins. Nevertheless, it is, again, the location and distribution
...more
The locations of specified target sites on the interior of the cell membrane also help to determine the shape of the cytoskeleton. And, as noted, the gene products out of which these targets are made do not determine the location of these targets. Similarly, the position and structure of the centrosome—the microtubule-organizing center—also influences the structure of the cytoskeleton. Although centrosomes are made of proteins, the proteins that form these structures do not entirely determine their location and form.
Biologists have shown that microsurgery on the cell membranes of ciliates can produce heritable changes in membrane patterns without altering the DNA.34 This suggests that membrane patterns (as opposed to membrane constituents) are impressed directly on daughter cells. In both cases—in membrane patterns and centrosomes—form is transmitted from parent three-dimensional structures to daughter three-dimensional structures directly. It is not entirely contained in DNA sequences or the proteins for which these sequences code.35 Instead, in each new generation, the form and structure of the cell
...more
36 If this is so, then natural selection acting on genetic variation and mutations alone cannot produce the new forms that arise in the history of life.
When I explain this in public talks, I can count on getting the same question. Someone in the audience will ask whether mutations could alter the structures in which epigenetic information resides. The questioner wonders if changes in epigenetic information could supply the variation and innovation that natural selection needs to generate new form, in much the same way that neo-Darwinists envision genetic mutations doing so. It’s a reasonable thing to ask, but it turns out that mutating epigenetic information doesn’t offer a realistic way of generating new forms of life. First, the structures
...more
This highlight has been truncated due to consecutive passage length restrictions.

