The Making of the Atomic Bomb: 25th Anniversary Edition
Rate it:
Open Preview
1%
Flag icon
The earth revolves around the sun, not the sun around the earth. “It is a profound and necessary truth,” Robert Oppenheimer would say, “that the deep things in science are not found because they are useful; they are found because it was possible to find them.” Those first atomic bombs, made by hand on a mesa in New Mexico, fell onto a stunned pre-nuclear world.
1%
Flag icon
In the middle years of my life I lived on four acres of land in Connecticut, a meadow completely enclosed within a forested wildlife preserve. It teemed with creatures: deer, squirrels, raccoons, a woodchuck family, turkeys, songbirds, crows, a Cooper’s hawk, even a pair of coyotes. Except for the hawk, every one of those animals constantly and fearfully watched over its shoulder lest it be caught, torn, and eaten alive. From the animals’ point of view, my edenic four acres were a war zone.
1%
Flag icon
Still reluctantly committed to engineering, Szilard enrolled in the Technische Hochschule, the technology institute, in Berlin. But what had seemed necessary in Hungary seemed merely practical in Germany. The physics faculty of the University of Berlin included Nobel laureates Albert Einstein, Max Planck and Max von Laue, theoreticians of the first rank. Fritz Haber, whose method for fixing nitrogen from the air to make nitrates for gunpowder saved Germany from early defeat in the Great War, was only one among many chemists and physicists of distinction at the several government- and ...more
1%
Flag icon
Physics students at that time wandered Europe in search of exceptional masters much as their forebears in scholarship and craft had done since medieval days.
1%
Flag icon
If someone whose specialty you wished to learn taught at Munich, you went to Munich; if at Göttingen, you went to Göttingen. Science grew out of the craft tradition in any case; in the first third of the twentieth century it retained—and to some extent still retains—an informal system of mastery and apprenticeship over which was laid the more recent system of the European graduate school. This informal collegiality partly explains the feeling among scientists of Szilard’s generation of membership in an exclusive group, almost a guild, of international scope and values.
2%
Flag icon
In the summer of 1922 the rate of exchange in Germany sank to 400 marks to the dollar. It fell to 7,000 to the dollar at the beginning of January 1923, the truly terrible year. One hundred sixty thousand in July. One million in August. And 4.2 trillion marks to the dollar on November 23, 1923, when adjustment finally began. Banks advertised for bookkeepers good with zeros and paid out cash withdrawals by weight. Antique stores filled to the ceiling with the pawned treasures of the bankrupt middle class. A theater seat sold for an egg. Only those with hard currency—mostly foreigners—thrived at ...more
2%
Flag icon
“How did you do it?” Szilard began explaining. “Five or ten minutes” later, he says, Einstein understood. After only a year of university physics, Szilard had worked out a rigorous mathematical proof that the random motion of thermal equilibrium could be fitted within the framework of the phenomenological theory in its original, classical form, without reference to a limiting atomic model—“and [Einstein] liked this very much.” Thus emboldened, Szilard took his paper—its title would be “On the extension of phenomenological thermodynamics to fluctuation phenomena”—to von Laue, who received it ...more
2%
Flag icon
A discovery in physics opened the field to new possibilities while discoveries Szilard made in literature and utopianism opened his mind to new approaches to world salvation. On February 27, 1932, in a letter to the British journal Nature, physicist James Chadwick of the Cavendish Laboratory at Cambridge University, Ernest Rutherford’s laboratory, announced the possible existence of a neutron. (He confirmed the neutron’s existence in a longer paper in the Proceedings of the Royal Society four months later, but Szilard would no more have doubted it at the time of Chadwick’s first cautious ...more
2%
Flag icon
An older Hungarian friend, Szilard remembers—Michael Polanyi, a chemist at the Kaiser Wilhelm Institutes with a family to consider—viewed the German political scene optimistically, like many others in Germany at the time.69, 70 “They all thought that civilized Germans would not stand for anything really rough happening.” Szilard held no such sanguine view, noting that the Germans themselves were paralyzed with cynicism, one of the uglier effects on morals of losing a major war.71 Adolf Hitler was appointed Chancellor of Germany on January 30, 1933. On the night of February 27 a Nazi gang ...more
This highlight has been truncated due to consecutive passage length restrictions.
3%
Flag icon
The second law specifies that heat will not pass spontaneously from a colder to a hotter body without some change in the system. Or, as Planck himself generalized it in his Ph.D. dissertation at the University of Munich in 1879, that “the process of heat conduction cannot be completely reversed by any means.” Besides forbidding the construction of perpetual-motion machines, the second law defines what Planck’s predecessor Rudolf Clausius named entropy: because energy dissipates as heat whenever work is done—heat that cannot be collected back into useful, organized form—the universe must slowly ...more
3%
Flag icon
The practice of science was not itself a science; it was an art, to be passed from master to apprentice as the art of painting is passed or as the skills and traditions of the law or of medicine are passed.98, 99 You could not learn the law from books and classes alone. You could not learn medicine. No more could you learn science, because nothing in science ever quite fits; no experiment is ever final proof; everything is simplified and approximate.
3%
Flag icon
The rules of the game are what we mean by fundamental physics. Even if we know every rule, however . . . what we really can explain in terms of those rules is very limited, because almost all situations are so enormously complicated that we cannot follow the plays of the game using the rules, much less tell what is going to happen next. We must, therefore, limit ourselves to the more basic question of the rules of the game. If we know the rules, we consider that we “understand” the world.
3%
Flag icon
Polanyi thought science reached into the unknown along a series of what he called “growing points,” each point the place where the most productive discoveries were being made.105 Alerted by their network of scientific publications and professional friendships—by the complete openness of their communication, an absolute and vital freedom of speech—scientists rushed to work at just those points where their particular talents would bring them the maximum emotional and intellectual return on their investment of effort and thought. It was clear, then, who among scientists judged the value of ...more
3%
Flag icon
Plausibility and scientific value measured an idea’s quality by the standards of orthodoxy; originality measured the quality of its dissent. Polanyi’s model of an open republic of science where each scientist judges the work of his peers against mutually agreed upon and mutually supported standards explains why the atom found such precarious lodging in nineteenth-century physics. It was plausible; it had considerable scientific value, especially in systematic importance; but no one had yet made any surprising discoveries about it. None, at least, sufficient to convince the network of only ...more
4%
Flag icon
They discovered that each different radioactive product possessed a characteristic “half-life,” the time required for its radiation to reduce to half its previously measured intensity. The half-life measured the transmutation of half the atoms in an element into atoms of another element or of a physically variant form of the same element—an “isotope,” as Soddy later named it.143 Half-life became a way to detect the presence of amounts of transmuted substances—“decay products”—too small to detect chemically. The half-life of uranium proved to be 4.5 billion years, of radium 1,620 years, of one ...more
4%
Flag icon
H. G. Wells thought Nature less trustworthy when he read similar statements in Soddy’s 1909 book Interpretation of Radium. “My idea is taken from Soddy,” he wrote of The World Set Free. “One of the good old scientific romances,” he called his novel; it was important enough to him that he interrupted a series of social novels to write it.150 Rutherford’s and Soddy’s discussions of radioactive change therefore inspired the science fiction novel that eventually started Leo Szilard thinking about chain reactions and atomic bombs.
4%
Flag icon
In September 1907, his first term at Manchester, Rutherford made up a list of possible subjects for research. Number seven on the list was “Scattering of alpha rays.” Working over the years to establish the alpha particle’s identity, he had come to appreciate its great value as an atomic probe; because it was massive compared to the high-energy but nearly weightless beta electron, it interacted vigorously with matter.
5%
Flag icon
the Newtonian laws that govern relationships within planetary systems, then Rutherford’s model should not work. But his was not a merely theoretical construct. It was the result of real physical experiment. And work it clearly did. It was as stable as the ages and it bounced back alpha particles like cannon shells. Someone would have to resolve the contradiction between classical physics and Rutherford’s experimentally tested atom. It would need to be someone with qualities different from Rutherford’s: not an experimentalist but a theoretician, yet a theoretician rooted deeply in the real. He ...more
6%
Flag icon
Rutherford spoke warmly of the recent work of the physicist C. T. R. Wilson, the inventor of the cloud chamber (which made the paths of charged particles visible as lines of water droplets hovering in supersaturated fog) and a friend from Cambridge student days.
7%
Flag icon
Bohr married, a serene marriage with a strong, intelligent and beautiful woman that lasted a lifetime. He taught at the University of Copenhagen through the autumn term. The new model of the atom he was struggling to develop continued to tax him. On November 4 he wrote Rutherford that he expected “to be able to finish the paper in a few weeks.”274 A few weeks passed; with nothing finished he arranged to be relieved of his university teaching and retreated to the country with Margrethe. The old system worked; he produced “a very long paper on all these things.”275 Then an important new idea ...more
8%
Flag icon
Shortly he was brought into the presence of the First Lord. As Weizmann remembered the experience of meeting the “brisk, fascinating, charming and energetic” Winston Churchill:330 Almost his first words were: “Well, Dr. Weizmann, we need thirty thousand tons of acetone. Can you make it?” I was so terrified by this lordly request that I almost turned tail. I answered: “So far I have succeeded in making a few hundred cubic centimeters of acetone at a time by the fermentation process. I do my work in a laboratory. I am not a technician, I am only a research chemist. But, if I were somehow able to ...more
9%
Flag icon
In six months of experiments at the Nicholson gin factory in Bow, Weizmann achieved half-ton scale. The process proved efficient. It fermented 37 tons of solvents—about 11 tons of acetone—from 100 tons of grain. Weizmann began training industrial chemists while the government took over six English, Scottish and Irish distilleries to accommodate them. A shortage of American corn—German submarines strangled British shipping in the First War as in the Second—threatened to shut down the operations. “Horse-chestnuts were plentiful,” notes Lloyd George in his War Memoirs, “and a national collection ...more
This highlight has been truncated due to consecutive passage length restrictions.
9%
Flag icon
They writhed in agony, ten thousand of them, serious casualties; and five thousand others died. Entire divisions abandoned the line. Germany achieved perfect surprise. All the belligerents had agreed under the Hague Declaration of 1899 Concerning Asphyxiating Gases “to abstain from the use of projectiles the sole object of which is the diffusion of asphyxiating or deleterious gases.”337 None seemed to think tear gas covered by this declaration, though tear gases are more toxic than chlorine in sufficient concentration. The French used tear gas in the form of rifle grenades as early as August ...more
9%
Flag icon
Hahn followed Haber to work on gas warfare. So did the physicist James Franck, head of the physics department at Haber’s institute, who, like Haber and Hahn, would later win the Nobel Prize.342 So did a crowd of industrial chemists employed by I.G. Farben, a cartel of eight chemical companies assembled in wartime by the energetic Carl Duisberg of Bayer.343 The plant at Leverkusen with the new lecture hall turned up hundreds of known toxic substances, many of them dye precursors and intermediates, and sent them off to the Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry for ...more
9%
Flag icon
The chemists, like bargain hunters, imagined they were spending a pittance of tens of thousands of lives to save a purseful more. Britain reacted with moral outrage but capitulated in the name of parity. It was more than Fritz Haber’s wife could bear.
10%
Flag icon
The United States Army was slow to respond to gas warfare because it assumed that masks would adequately protect U.S. troops. The civilian Department of the Interior, which had experience dealing with poison gases in mines, therefore took the lead in chemical warfare studies. The Army quickly changed its mind when the Germans introduced mustard gas in July 1917. Research contracts for poison-gas development went out to Cornell, Johns Hopkins, Harvard, MIT, Princeton, Yale and other universities.365 With what a British observer could now call “the great importance attached in America to this ...more
10%
Flag icon
Americans invented the machine gun: Hiram Stevens Maxim, a Yankee from Maine; Colonel Isaac Lewis, a West Pointer, director of the U.S. Army coast artillery school; William J. Browning, a gun maker and businessman; and their predecessor Richard Jordan Gatling, who correctly located the machine gun among automated systems. “It bears the same relation to other firearms,” Gatling noted, “that McCormack’s Reaper does to the sickle, or the sewing machine to the common needle.”
10%
Flag icon
“The War had become undisguisedly mechanical and inhuman,” Siegfried Sassoon allows a fictional infantry officer to see. “What in earlier days had been drafts of volunteers were now droves of victims.”378 Men on every front independently discovered their victimization. Awareness intensified as the war dragged on. In Russia it exploded in revolution. In Germany it motivated desertions and surrenders. Among the French it led to mutinies in the front lines. Among the British it fostered malingering.
10%
Flag icon
A new mechanism, the tank, ended the stalemate. An old mechanism, the blockade, choked off the German supply of food and matériel. The increasing rebelliousness of the foot soldiers threatened the security of the bureaucrats. Or the death machine worked too well, as against France, and began to run out of raw material. The Yanks came over with their sleeves rolled up, an untrenched continent behind them where the trees were not hung with entrails. The war putrified to a close.
11%
Flag icon
Though he was admitted to the University of Budapest and might have stayed, von Neumann chose instead to leave Hungary at seventeen, in 1921, for Berlin, where he came under the influence of Fritz Haber and studied first for a chemical engineering degree, awarded at the Technical Institute of Zürich in 1925. A year later he picked up a Ph.D. summa cum laude in mathematics at Budapest; in 1927 he became a Privatdozent at the University of Berlin; in 1929, at twenty-five, he was invited to lecture at Princeton. He was professor of mathematics at Princeton by 1931 and accepted lifetime ...more
11%
Flag icon
The bow of the Carpathians as they curve around northwestward begins to define the northern border of Czechoslovakia. Long before it can complete that service the bow bends down toward the Austrian Alps, but a border region of mountainous uplift, the Sudetes, continues across Czechoslovakia. Some sixty miles beyond Prague it turns southwest to form a low range between Czechoslovakia and Germany that is called, in German, the Erzgebirge: the Ore Mountains. The Erzgebirge began to be mined for iron in medieval days. In 1516 a rich silver lode was discovered in Joachimsthal (St. Joachim’s dale), ...more
12%
Flag icon
A highlight of the summer was a pack trip. It started in Frijoles, a village within sheer, pueblo-carved Cañon de los Frijoles across the Rio Grande from the Sangre de Cristos, and ascended the canyons and mesas of the Pajarito Plateau up to the Valle Grande of the vast Jemez Caldera above 10,000 feet. The Jemez Caldera is a bowl-shaped volcanic crater twelve miles across with a grassy basin inside 3,500 feet below the rim, the basin divided by mountainous extrusions of lava into several high valleys. It is a million years old and one of the largest calderas in the world, visible even from the ...more
13%
Flag icon
Light as particle and light as wave, matter as particle and matter as wave, were mutually exclusive abstractions that complemented each other. They could not be merged or resolved; they had to stand side by side in their seeming paradox and contradiction; but accepting that uncomfortably non-Aristotelian condition meant physics could know more than it otherwise knew. And furthermore, as Heisenberg’s recently published uncertainty principle demonstrated within its limited context, the universe appeared to be arranged that way as far down as human senses would ever be able to see.
13%
Flag icon
Newspapers soon published the discovery in plainer words: Sir Ernest Rutherford, headlines blared in 1919, had split the atom. It was less a split than a transmutation, the first artificial transmutation ever achieved. When an alpha particle, atomic weight 4, collided with a nitrogen atom, atomic weight 14, knocking out a hydrogen nucleus (which Rutherford would shortly propose calling a proton), the net result was a new atom of oxygen in the form of the oxygen isotope 017: 4 plus 14 minus 1. There would hardly be enough 017 to breathe; only about one alpha particle in 300,000 crashed through ...more
13%
Flag icon
Atoms do not fall apart, Aston reasoned. Something very powerful holds them together. That glue is now called binding energy. To acquire it, hydrogen atoms packed together in a nucleus sacrifice some of their mass.
13%
Flag icon
Locked within all the elements, he said, but most unstably so in the case of those with high packing fractions, was mass converted to energy. Comparing helium to hydrogen, nearly 1 percent of the hydrogen mass was missing (4 divided by 4.032 = .992 = 99.2%). “If we were able to transmute [hydrogen] into [helium] nearly 1 percent of the mass would be annihilated. On the relativity equivalence of mass and energy now experimentally proved [Aston refers here to Einstein’s famous equation E = mc2], the quantity of energy liberated would be prodigious. Thus to change the hydrogen in a glass of water ...more
14%
Flag icon
Twice as many Americans became physicists in the dozen years between 1920 and 1932 as had in the previous sixty. They were better trained than their older counterparts, at least fifty of them in Europe on National Research Council or International Education Board or the new Guggenheim fellowships. By 1932 the United States counted about 2,500 physicists, three times as many as in 1919.
14%
Flag icon
Scientists and artists proved less similar in personality than in cognition, but both groups were similarly different from businessmen. Dramatically and significantly, almost half the scientists in this study reported themselves to have been fatherless as children, “their fathers dying early, or working away from home, or remaining so aloof and nonsupportive that their sons scarcely knew them.”527 Those scientists who grew up with living fathers described them as “rigid, stern, aloof, and emotionally reserved.”528 (A group of artists previously studied was similarly fatherless; a group of ...more
14%
Flag icon
Guiding that research was usually a fatherly science teacher.530 Of the qualities that distinguished this mentor in the minds of his students, not teaching ability but “masterfulness, warmth and professional dignity” ranked first.531 One study of two hundred of these mentors concludes: “It would appear that the success of such teachers rests mainly upon their capacity to assume a father role to their students.”532 The fatherless young man finds a masterful surrogate father of warmth and dignity, identifies with him and proceeds to emulate him. In a later stage of this process the independent ...more
Alexander White
Mimetic desire
14%
Flag icon
I believe that through discipline, though not through discipline alone, we can achieve serenity, and a certain small but precious measure of freedom from the accidents of incarnation, and charity, and that detachment which preserves the world which it renounces. I believe that through discipline we can learn to preserve what is essential to our happiness in more and more adverse circumstances, and to abandon with simplicity what would else have seemed to us indispensable; that we come a little to see the world without the gross distortion of personal desire, and in seeing it so, accept more ...more
15%
Flag icon
At the leading edges of science, at the threshold of the truly new, the threat has often nearly overwhelmed. Thus Rutherford’s shock at rebounding alpha particles, “quite the most incredible event that has ever happened to me in my life.” Thus Heisenberg’s “deep alarm” when he came upon his quantum mechanics, his hallucination of looking through “the surface of atomic phenomena” into “a strangely beautiful interior” that left him giddy. Thus also, in November 1915, Einstein’s extreme reaction when he realized that the general theory of relativity he was painfully developing in the isolation of ...more
15%
Flag icon
Quantum theory bloomed while nuclear studies stalled. Rutherford had felt optimistic enough in 1923 to shout at the annual meeting of the British Association, “We are living in the heroic age of physics!” By 1927, in a paper on atomic structure, he was a little less confident.575 “We are not yet able to do more than guess at the structure even of the lighter and presumably least complex atoms,” he writes.576 He proposed a structure nonetheless, with electrons in the nucleus orbiting around nuclear protons, an atom within an atom.
17%
Flag icon
He lived privately until October, then left with his second wife, Elsa, on a long trip to the Far East and Japan, receiving notice of his Nobel Prize en route. He spent twelve days in Palestine on the way back and stopped over in Spain. By the time he returned to Berlin, German preoccupation with politics had temporarily retreated behind preoccupation with the Dadaistic mark, then soaring toward 54,000 to the dollar.644 Einstein went on with his work, including the Einstein-Szilard refrigerator pump and his first efforts toward a unified field theory, but began frequently to travel abroad.
17%
Flag icon
The dispersion of the Jewish people from Palestine—the Diaspora—began in the sixth century B.C. when Babylon conquered the southern Palestinian kingdom of Judah, destroyed Solomon’s temple and carried a large body of Jews into captivity.653 By the beginning of the Christian era, under Roman hegemony, Jews had established communities in Egypt, in Greece, around the Mediterranean and on the shores of the Black Sea and there were Jewish slaves with the Roman legions on the Rhine. Conditions worsened again for the Jews when the Empire was Christianized in the fourth century A.D. with the ...more
17%
Flag icon
The English were the first to expel the Jews entirely. The Jews of England belonged to the Crown, which had systematically extracted their wealth through a special Exchequer to the Jews. By 1290 it had bled them dry. Edward I thereupon confiscated what little they had left and threw them out. They crossed to France, but expulsion from that country followed in 1392; from Spain, at the demand of the Inquisition, in 1492; from Portugal in 1497. Since Germany was a region of multiple sovereignties, German Jews could not be generally expelled. They had been fleeing eastward from bitter German ...more
17%
Flag icon
The enemies of Christ became Russia’s “Jewish problem.” In Russia’s benighted intolerance it framed only two solutions: assimilation (by conversion to Christianity) or expulsion. For the interim it practiced quarantine. A decree of 1791 limited Jewish residence to the formerly Polish territories and the unpopulated steppes above the Black Sea, a region that extended north across 286,000 square miles of central Europe to the Baltic: the Pale of Settlement (“pale” in its old sense of “enclosed by a boundary”). The Ashkenazim numbered one-ninth of the Pale’s total population, and might have ...more
17%
Flag icon
Emancipations as they progressed within less revolutionary states included Holland-Belgium, 1795; Sweden, 1848; Denmark and Greece, 1849; England by a gradual unmuddling completely in 1866; Austria, 1867; Spain by the withdrawal of its 1492 order of expulsion in 1868; the new German Empire, 1871. Though they were influential out of all proportion to their numbers, the emancipated Jews of Western Europe, many of whom moved directly to assimilate, were only a minute fraction of the Diaspora. The preponderance of the Jewish people, increased by 1850 to 2.5 million, by 1900 to 5 million, struggled ...more
18%
Flag icon
Abraham Flexner, the American educator, sought out Einstein at Caltech. Flexner was in the process of founding a new institution, not yet located or named, chartered in 1930 with a $5 million endowment. The two men strolled for most of an hour up and down the halls of the club where Einstein was staying. They met again at Oxford in May and once more at the Einsteins’ summer house at Caputh, outside Berlin, in June. “We sat then on the veranda and talked until evening,” Flexner recalled, “when Einstein invited me to stay to supper. After supper we talked until almost eleven. By that time it was ...more
19%
Flag icon
The Solvay Conference, devoted for the first time to nuclear physics, drew men and women from the highest ranks of two generations: Marie Curie, Rutherford, Bohr, Lise Meitner among the older physicists; Heisenberg, Pauli, Enrico Fermi, Chadwick (eight men in all from Cambridge and no one from devastated Göttingen), Gamow, Irene and Frédéric JoliotCurie, Patrick Blackett, Rudolf Peierls among the younger. Ernest Lawrence, his cyclotron humming, was the token American that year. They debated the structure of the proton. Other topics they discussed may have seemed more far-reaching at the time. ...more
20%
Flag icon
When the Scuola Normale examiner saw Fermi’s competition essay on the assigned theme “Characteristics of sound” he was stunned. It set forth, reports Segrè, “the partial differential equation of a vibrating rod, which Fermi solved by Fourier analysis, finding the eigenvalues and the eigenfrequencies . . . which would have been creditable for a doctoral examination.”768 Calling in the seventeen-year-old liceo graduate, the examiner told him he was extraordinary and predicted he would become an important scientist. By 1920 Fermi could write a friend that he had reached the point of teaching his ...more
« Prev 1 3