1. If you draw large, random samples from any population, the means of those samples will be distributed normally around the population mean (regardless of what the distribution of the underlying population looks like). 2. Most sample means will lie reasonably close to the population mean; the standard error is what defines “reasonably close.” 3. The central limit theorem tells us the probability that a sample mean will lie within a certain distance of the population mean. It is relatively unlikely that a sample mean will lie more than two standard errors from the population mean, and
...more