More on this book
Community
Kindle Notes & Highlights
Read between
November 21 - December 10, 2018
A paradigm can, for that matter, even insulate the community from those socially important problems that are not reducible to the puzzle form, because they cannot be stated in terms of the conceptual and instrumental tools the paradigm supplies.
The scientific enterprise as a whole does from time to time prove useful, open up new territory, display order, and test long-accepted belief. Nevertheless, the individual engaged on a normal research problem is almost never doing any one of these things.
Turn now to another, more difficult, and more revealing aspect of the parallelism between puzzles and the problems of normal science. If it is to classify as a puzzle, a problem must be characterized by more than an assured solution. There must also be rules that limit both the nature of acceptable solutions and the steps by which they are to be obtained.
The man who builds an instrument to determine optical wave lengths must not be satisfied with a piece of equipment that merely attributes particular numbers to particular spectral lines. He is not just an explorer or measurer. On the contrary, he must show, by analyzing his apparatus in terms of the established body of optical theory, that the numbers his instrument produces are the ones that enter theory as wave lengths. If some residual vagueness in the theory or some unanalyzed component of his apparatus prevents his completing that demonstration, his colleagues may well conclude that he
...more
Rules, I suggest, derive from paradigms, but paradigms can guide research even in the absence of rules.
the normal cards these identifications were usually correct, but the anomalous cards were almost always identified, without apparent hesitation or puzzlement, as normal. The black four of hearts might, for example, be identified as the four of either spades or hearts. Without any awareness of trouble, it was immediately fitted to one of the conceptual categories prepared by prior experience.
Even at forty times the average exposure required to recognize normal cards for what they were, more than 10 per cent of the anomalous cards were not correctly identified. And the subjects who then failed often experienced acute personal distress. One of them exclaimed: “I can’t make the suit out, whatever it is. It didn’t even look like a card that time. I don’t know what color it is now or whether it’s a spade or a heart. I’m not even sure now what a spade looks like. My God!”13 In the next section we shall occasionally see scientists behaving this way too.
Either as a metaphor or because it reflects the nature of the mind, that psychological experiment provides a wonderfully simple and cogent schema for the process of scientific discovery. In science, as in the playing card experiment, novelty emerges only with difficulty, manifested by resistance, against a background provided by expectation. Initially, only the anticipated and usual are experienced even under circumstances where anomaly is later to be observed.
novelty ordinarily emerges only for the man who, knowing with precision what he should expect, is able to recognize that something has gone wrong.
If awareness of anomaly plays a role in the emergence of new sorts of phenomena, it should surprise no one that a similar but more profound awareness is prerequisite to all acceptable changes of theory. On this point historical evidence is, I think, entirely unequivocal. The state of Ptolemaic astronomy was a scandal before Copernicus’ announcement.1 Galileo’s contributions to the study of motion depended closely upon difficulties discovered in Aristotle’s theory by scholastic critics.
in the early 1770’s, there were almost as many versions of the phlogiston theory as there were pneumatic chemists.8 That proliferation of versions of a theory is a very usual symptom of crisis. In his preface, Copernicus complained of it as well.
once it has achieved the status of paradigm, a scientific theory is declared invalid only if an alternate candidate is available to take its place.
its defenders will do what we have already seen scientists doing when confronted by anomaly. They will devise numerous articulations and ad hoc modifications of their theory in order to eliminate any apparent conflict.
Excepting those that are exclusively instrumental, every problem that normal science sees as a puzzle can be seen, from another viewpoint, as a counterinstance and thus as a source of crisis. Copernicus saw as counterinstances what most of Ptolemy’s other successors had seen as puzzles in the match between observation and theory.
Wolfgang Pauli, in the months before Heisenberg’s paper on matrix mechanics pointed the way to a new quantum theory, wrote to a friend, “At the moment physics is again terribly confused. In any case, it is too difficult for me, and I wish I had been a movie comedian or something of the sort and had never heard of physics.” That testimony is particularly impressive if contrasted with Pauli’s words less than five months later: “Heisenberg’s type of mechanics has again given me hope and joy in life. To be sure it does not supply the solution to the riddle, but I believe it is again possible to
...more
Nor is it an accident that in both these periods the so-called thought experiment should have played so critical a role in the progress of research. As I have shown elsewhere, the analytical thought experimentation that bulks so large in the writings of Galileo, Einstein, Bohr, and others is perfectly calculated to expose the old paradigm to existing knowledge in ways that isolate the root of crisis with a clarity unattainable in the laboratory.12
Let us here note only one thing about it. Almost always the men who achieve these fundamental inventions of a new paradigm have been either very young or very new to the field whose paradigm they change.15 And perhaps that point need not have been made explicit, for obviously these are the men who, being little committed by prior practice to the traditional rules of normal science, are particularly likely to see that those rules no longer define a playable game and to conceive another set that can replace them.
Normal research, which is cumulative, owes its success to the ability of scientists regularly to select problems that can be solved with conceptual and instrumental techniques close to those already in existence. (That is why an excessive concern with useful problems, regardless of their relation to existing knowledge and technique, can so easily inhibit scientific development.)
Surveying the rich experimental literature from which these examples are drawn makes one suspect that something like a paradigm is prerequisite to perception itself.
Using traditional instruments, some as simple as a piece of thread, late sixteenth-century astronomers repeatedly discovered that comets wandered at will through the space previously reserved for the immutable planets and stars.7 The very ease and rapidity with which astronomers saw new things when looking at old objects with old instruments may make us wish to say that, after Copernicus, astronomers lived in a different world. In any case, their research responded as though that were the case.
Newton wrote that Galileo had discovered that the constant force of gravity produces a motion proportional to the square of the time. In fact, Galileo’s kinematic theorem does take that form when embedded in the matrix of Newton’s own dynamical concepts. But Galileo said nothing of the sort. His discussion of falling bodies rarely alludes to forces, much less to a uniform gravitational force that causes bodies to fall.2 By crediting to Galileo the answer to a question that Galileo’s paradigms did not permit to be asked, Newton’s account hides the effect of a small but revolutionary
...more
In so far as he is engaged in normal science, the research worker is a solver of puzzles, not a tester of paradigms. Though he may, during the search for a particular puzzle’s solution, try out a number of alternative approaches, rejecting those that fail to yield the desired result, he is not testing the paradigm when he does so. Instead he is like the chess player who, with a problem stated and the board physically or mentally before him, tries out various alternative moves in the search for a solution. These trial attempts, whether by the chess player or by the scientist, are trials only of
...more
Nevertheless, anomalous experiences may not be identified with falsifying ones. Indeed, I doubt that the latter exist. As has repeatedly been emphasized before, no theory ever solves all the puzzles with which it is confronted at a given time; nor are the solutions already achieved often perfect.
paradigms will often disagree about the list of problems that any candidate for paradigm must resolve. Their standards or their definitions of science are not the same. Must a theory of motion explain the cause of the attractive forces between particles of matter or may it simply note the existence of such forces? Newton’s dynamics was widely rejected because, unlike both Aristotle’s and Descartes’s theories, it implied the latter answer to the question. When Newton’s theory had been accepted, a question was therefore banished from science. That question, however, was one that general
...more
Communication across the revolutionary divide is inevitably partial. Consider, for another example, the men who called Copernicus mad because he proclaimed that the earth moved. They were not either just wrong or quite wrong. Part of what they meant by ‘earth’ was fixed position. Their earth, at least, could not be moved. Correspondingly, Copernicus’ innovation was not simply to move the earth. Rather, it was a whole new way of regarding the problems of physics and astronomy, one that necessarily changed the meaning of both ‘earth’ and ‘motion.’
These facts and others like them are too commonly known to need further emphasis. But they do need re-evaluation. In the past they have most often been taken to indicate that scientists, being only human, cannot always admit their errors, even when confronted with strict proof. I would argue, rather, that in these matters neither proof nor error is at issue. The transfer of allegiance fom paradigm to paradigm is a conversion experience that cannot be forced. Lifelong resistance, particularly from those whose productive careers have committed them to an older tradition of normal science, is not
...more
Why should the enterprise sketched above move steadily ahead in ways that, say, art, political theory, or philosophy does not? Why is progress a perquisite reserved almost exclusively for the activities we call science?
For many centuries, both in antiquity and again in early modern Europe, painting was regarded as the cumulative discipline. During those years the artist’s goal was assumed to be representation. Critics and historians, like Pliny and Vasari, then recorded with veneration the series of inventions from foreshortening through chiaroscuro that had made possible successively more perfect representations of nature.1 But those are also the years, particularly during the Renaissance, when little cleavage was felt between the sciences and the arts. Leonardo was only one of many men who passed freely
...more
Nevertheless, there are no other professional communities in which individual creative work is so exclusively addressed to and evaluated by other members of the profession. The most esoteric of poets or the most abstract of theologians is far more concerned than the scientist with lay approbation of his creative work, though he may be even less concerned with approbation in general. That difference proves consequential. Just because he is working only for an audience of colleagues, an audience that shares his own values and beliefs, the scientist can take a single set of standards for granted.
Even more important, the insulation of the scientific community from society permits the individual scientist to concentrate his attention upon problems that he has good reason to believe he will be able to solve.
the contrast between natural scientists and many social scientists proves instructive. The latter often tend, as the former almost never do, to defend their choice of a research problem—e.g., the effects of racial discrimination or the causes of the business cycle—chiefly in terms of the social importance of achieving a solution. Which group would one then expect to solve problems at a more rapid rate?
Given the confidence in their paradigms, which makes this educational technique possible, few scientists would wish to change it. Why, after all, should the student of physics, for example, read the works of Newton, Faraday, Einstein, or Schrödinger, when everything he needs to know about these works is recapitulated in a far briefer, more precise, and more systematic form in a number of up-to-date textbooks?
Scientific education makes use of no equivalent for the art museum or the library of classics, and the result is a sometimes drastic distortion in the scientist’s perception of his discipline’s past. More than the practitioners of other creative fields, he comes to see it as leading in a straight line to the discipline’s present vantage. In short, he comes to see it as progress. No alternative is available to him while he remains in the field.
Inevitably those remarks will suggest that the member of a mature scientific community is, like the typical character of Orwell’s 1984, the victim of a history rewritten by the powers that be. Furthermore, that suggestion is not altogether inappropriate. There are losses as well as gains in scientific revolutions, and scientists tend to be peculiarly blind to the former.
But only the civilizations that descend from Hellenic Greece have possessed more than the most rudimentary science. The bulk of scientific knowledge is a product of Europe in the last four centuries. No other place and time has supported the very special communities from which scientific productivity comes.
One of the strongest, if still unwritten, rules of scientific life is the prohibition of appeals to heads of state or to the populace at large in matters scientific.
Because the unit of scientific achievement is the solved problem and because the group knows well which problems have already been solved, few scientists will easily be persuaded to adopt a viewpoint that again opens to question many problems that had previously been solved. Nature itself must first undermine professional security by making prior achievements seem problematic.
scientists will be reluctant to embrace it unless convinced that two all-important conditions are being met. First, the new candidate must seem to resolve some outstanding and generally recognized problem that can be met in no other way. Second, the new paradigm must promise to preserve a relatively large part of the concrete problem-solving ability that has accrued to science through its predecessors. Novelty for its own sake is not a desideratum in the sciences as it is in so many other creative fields.
It is now time to notice that until the last very few pages the term ‘truth’ had entered this essay only in a quotation from Francis Bacon. And even in those pages it entered only as a source for the scientist’s conviction that incompatible rules for doing science cannot coexist except during revolutions when the profession’s main task is to eliminate all sets but one.
When Darwin first published his theory of evolution by natural selection in 1859, what most bothered many professionals was neither the notion of species change nor the possible descent of man from apes. The evidence pointing to evolution, including the evolution of man, had been accumulating for decades, and the idea of evolution had been suggested and widely disseminated before. Though evolution, as such, did encounter resistance, particularly from some religious groups, it was by no means the greatest of the difficulties the Darwinians faced. That difficulty stemmed from an idea that was
...more
For many men the abolition of that teleological kind of evolution was the most significant and least palatable of Darwin’s suggestions.5 The Origin of Species recognized no goal set either by God or nature. Instead, natural selection, operating in the given environment and with the actual organisms presently at hand, was responsible for the gradual but steady emergence of more elaborate, further articulated, and vastly more specialized organisms. Even such marvelously adapted organs as the eye and hand of man—organs whose design had previously provided powerful arguments for the existence of a
...more