More on this book
Community
Kindle Notes & Highlights
Read between
March 24 - April 7, 2023
So much for inductivism. And since inductivism is false, empiricism must be as well. For if one cannot derive predictions from experience, one certainly cannot derive explanations. Discovering a new explanation is inherently an act of creativity.
The deceptiveness of the senses was always a problem for empiricism – and thereby, it seemed, for science. The empiricists’ best defence was that the senses cannot be deceptive in themselves. What misleads us are only the false interpretations that we place on appearances.
Empiricism never did achieve its aim of liberating science from authority. It denied the legitimacy of traditional authorities, and that was salutary. But unfortunately it did this by setting up two other false authorities: sensory experience and whatever fictitious process of ‘derivation’, such as induction, one imagines is used to extract theories from experience.
As Arthur Conan Doyle’s fictional detective Sherlock Holmes put it in the short story ‘A Scandal in Bohemia’, ‘It is a capital mistake to theorize before one has data.’ But that was itself a capital mistake. We never know any data before interpreting it through theories. All observations are, as Popper put it, theory-laden,* and hence fallible, as all our theories are.
Conan Doyle came much closer to the truth when, during ‘The Boscombe Valley Mystery’, he had Holmes remark that ‘circumstantial evidence’ (evidence about unwitnessed events) is ‘a very tricky thing…It may seem to point very straight to one thing, but if you shift your own point of view a little, you may find it pointing in an equally uncompromising manner to something entirely different…There is nothing more deceptive than an obvious fact.’
Discoveries such as fire, clothing, stone tools, bronze, and so on, happened so rarely that from an individual’s point of view the world never improved. Sometimes people even realized (with somewhat miraculous prescience) that making progress in practical ways would depend on progress in understanding puzzling phenomena in the sky.
In short, they wanted to create knowledge, in order to make progress, but they did not know how.
This was the situation from our species’ earliest prehistory, through the dawn of civilization, and through its imperceptibly slow increase in sophistication – with many reverses – until a few centuries ago. Then a powerful new mode of discovery and explanation emerged, which later became known as science. Its emergence is known as the scientific revolution, because it succeeded almost immediately in creating knowledge at a noticeable rate, which has increased ever since.
What I mean by it will emerge here as we go along. It is one of several aspects of ‘the beginning of infinity’, and is a theme of this book. But one thing that all conceptions of the Enlightenment agree on is that it was a rebellion, and specifically a rebellion against authority in regard to knowledge.
The usual sequel has merely been that new authorities replaced the old. What was needed for the sustained, rapid growth of knowledge was a tradition of criticism. Before the Enlightenment, that was a very rare sort of tradition: usually the whole point of a tradition was to keep things the same.
The Enlightenment was at root a philosophical change.
Testability is now generally accepted as the defining characteristic of the scientific method. Popper called it the ‘criterion of demarcation’ between science and non-science.
The essence of experimental testing is that there are at least two apparently viable theories known about the issue in question,
Expectations are theories too.
That myth, though comprehensively false, does constitute an explanation of seasons: it is a claim about the reality that brings about our experience of winter. It is also eminently testable: if the cause of winter is Demeter’s periodic sadness, then winter must happen everywhere on Earth at the same time. Therefore, if the ancient Greeks had known that a warm growing season occurs in Australia at the very moment when, as they believed, Demeter is at her saddest, they could have inferred that there was something wrong with their explanation of seasons.
Without a good explanatory theory, they can simply reinterpret the omens, pick a new date, and make essentially the same prediction. In such cases, testing one’s theory and abandoning it when it is refuted constitutes no progress towards understanding the world. If an explanation could easily explain anything in the given field, then it actually explains nothing.
As the physicist Richard Feynman said, ‘Science is what we have learned about how to keep from fooling ourselves.’ By adopting easily variable explanations, the gambler and prophet are ensuring that they will be able to continue fooling themselves no matter what happens. Just as thoroughly as if they had adopted untestable theories, they are insulating themselves from facing evidence that they are mistaken about what is really there in the physical world.
But in fact they could never have guessed that such an expedition might provide evidence about seasons unless they had already guessed that seasons would be out of phase in the two hemispheres – and if that guess was hard to vary, which it could have been only if it had been part of a good explanation.
The best explanations are the ones that are most constrained by existing knowledge – including other good explanations as well as other knowledge of the phenomena to be explained. That is why testable explanations that have passed stringent tests become extremely good explanations, which is in turn why the maxim of testability promotes the growth of knowledge in science.
That is what a good explanation will do for you: it makes it harder for you to fool yourself.
The theory reaches out, as it were, from its finite origins inside one brain that has been affected only by scraps of patchy evidence from a small part of one hemisphere of one planet – to infinity.
The role of experiment and observation is to choose between existing theories, not to be the source of new ones. We interpret experiences through explanatory theories, but true explanations are not obvious.
Fallibilism entails not looking to authorities but instead acknowledging that we may always be mistaken, and trying to correct errors. We
Some of the resulting ideas have enormous reach: they explain more than what they were originally designed to. The reach of an explanation is an intrinsic attribute of it, not an assumption that we make about it as empiricism and inductivism claim.
It may seem strange that scientific instruments bring us closer to reality when in purely physical terms they only ever separate us further from it. But we observe nothing directly anyway.
We call a phenomenon significant (or fundamental) if parochial theories are inadequate to explain it, or if it appears in the explanation of many other phenomena; so it may seem that human beings and their wishes and actions are extremely insignificant in the universe at large.
But the Principle says that all such values are themselves anthropocentric: they explain only the behaviour of the scum, which is itself insignificant.
the interiors of refrigerators constructed by physicists are by far the coldest and darkest places in the universe. Far from typical.
As a result, its other resources are depleted by the increased usage; so an increasing proportion of the population now has to colonize more marginal habitats and make do with inferior resources, and so on. This
To the extent that we are on a ‘spaceship’, we have never been merely its passengers, nor (as is often said) its stewards, nor even its maintenance crew: we are its designers and builders. Before the designs created by humans, it was not a vehicle, but only a heap of dangerous raw materials.
The moral component of the Spaceship Earth metaphor is therefore somewhat paradoxical. It casts humans as ungrateful for gifts which, in reality, they never received. And it casts all other species in morally positive roles in the spaceship’s life-support system, with humans as the only negative actors. But humans are part of the biosphere, and the supposedly immoral behaviour is identical to what all other species do when times are good – except that humans alone try to mitigate the effect of that response on their descendants and on other species.
The Principle of Mediocrity is paradoxical too. Since it singles out anthropocentrism for special opprobrium among all forms of parochial misconception, it is itself anthropocentric.
So how can it tell us anything about how the world beyond the scum is organized, as the Principle of Mediocrity purports to do? In any case, it was not arrogance that made
Our night vision is poor and monochromatic because not enough of our ancestors died of that limitation to create evolutionary pressure for anything better. So Dawkins argues – and here he is invoking the Principle of Mediocrity – that there is no reason to expect our brains to be any different from our eyes in this regard: they evolved to cope with the narrow class of phenomena that commonly occur in the biosphere, on approximately human scales of size, time, energy and so on.
So, just as our senses cannot detect neutrinos or quasars or most other significant phenomena in the cosmic scheme of things, there is no reason to expect our brains to understand them. To the extent that they already do understand them, we have been lucky – but a run of luck cannot be expected to continue for long. Hence Dawkins agrees with an earlier evolutionary biologist, John Haldane, who expected that ‘the universe is not only queerer than we suppose, but queerer than we can suppose.’
Science, for all its successes and aspirations, would turn out to be inherently parochial – and, ironically, anthropocentric.
In this sense the DNA is a coded description of ancestral environments.
We are accustomed to thinking of the Earth as hospitable and the moon as a bleak, faraway deathtrap. But that is how our ancestors would have regarded Oxfordshire, and, ironically, it is how I, today, would regard the primeval Great Rift Valley.
But it is irrelevant to the arguments of this chapter, because no such organism is capable of creating or using explanatory knowledge. Hence the cultural knowledge of such organisms is of essentially the same type as genetic knowledge, and does indeed have only a small and inherently limited reach. They are not universal constructors, but highly specialized ones. For them, the Haldane–Dawkins argument is valid: the world is stranger than they can conceive.
Changing our genes in order to improve our lives and to facilitate further improvements is no different in this regard from augmenting our skin with clothes or our eyes with telescopes.
In addition to matter and energy, there is one other essential requirement, namely evidence: the information needed to test scientific theories. The Earth’s surface is rich in evidence. We happened to get round to testing Newton’s laws in the seventeenth century, and Einstein’s in the twentieth, but the evidence with which we did that – light from the sky – had been deluging the surface of the Earth for billions of years before that, and will continue to do so for billions more. Even today we have barely begun to examine that evidence: on any clear night, the chances are that your roof will be
...more
Hence presumably they have long since solved the problem of how to avoid dying, and so ‘generations’ are no longer essential to the way their ship works. In any case, with hindsight, a generation ship was a poor choice for dramatizing the claim that the human condition is fragile and dependent on support from an unaltered biosphere, for that claim is contradicted by the very possibility of such a spaceship. If it is possible to live indefinitely in a spaceship in space, then it would be much more possible to use the same technology to live on the surface of the Earth – and to make continuing
progress which would make it ever easier. It would make little practical difference whether the biosphere had been ruined or not.
Note also that the SETI instrument is exquisitely adapted to detecting something that has never yet been detected. Biological evolution could never produce such an adaptation. Only scientific knowledge can. This illustrates why non-explanatory knowledge cannot be universal.
follows that humans, people and knowledge are not only objectively significant: they are by far the most significant phenomena in nature – the only ones whose behaviour cannot be understood without understanding everything of fundamental importance.
What has happened, physically, is that the moon has been changed – initially only minimally – by matter that came from the Earth. And what made the difference was not the matter, but the knowledge that it encoded. In response to that knowledge, the substance of the moon reorganized itself in a new, increasingly extensive and complex way, and started to create an indefinitely long stream of ever-improving explanations. A beginning of infinity.
– The fact that everything that is not forbidden by laws of nature is achievable, given the right knowledge. ‘Problems are soluble.’ – The ‘perspiration’ phase can always be automated. – The knowledge-friendliness of the physical world. – People are universal constructors. – The beginning of the open-ended creation of explanations. – The environments that could create an open-ended stream of knowledge, if suitably primed – i.e. almost all environments. – The fact that new
adaptations have distinctly suboptimal features. For instance, the eyes of vertebrates have their ‘wiring’ and blood supply in front of the retina, where they absorb and scatter incoming light and so degrade the image. There is also a blind spot where the optic nerve passes through the retina on its way to the brain. The eyes of some invertebrates, such as squids, have the same basic design but without those design flaws.