More on this book
Community
Kindle Notes & Highlights
Started reading
April 18, 2022
In this book I argue that all progress, both theoretical and practical, has resulted from a single human activity: the quest for what I call good explanations. Though this quest is uniquely human, its effectiveness is also a fundamental fact about reality at the most impersonal, cosmic level – namely that it conforms to universal laws of nature that are indeed good explanations.
Behind it all is surely an idea so simple, so beautiful, that when we grasp it – in a decade, a century, or a millennium – we will all say to each other, how could it have been otherwise? John Archibald Wheeler, Annals of the New York Academy of Sciences, 480 (1986)
Scientific theories are explanations: assertions about what is out there and how it behaves. Where do these theories come from? For most of the history of science, it was mistakenly believed that we ‘derive’ them from the evidence of our senses – a philosophical doctrine known as empiricism: Empiricism For example, the philosopher John Locke wrote in 1689 that the mind is like ‘white paper’ on to which sensory experience writes, and that that is where all our knowledge of the physical world comes from. Another empiricist metaphor was that one could read knowledge from the ‘Book of Nature’ by
...more
Although we first noticed a daily rotation by observing stars, it is not a property of the stars at all, but of the Earth, and of the observers who rotate with it. It is a classic example of the deceptiveness of the senses: the Earth looks and feels as though it is at rest beneath our feet, even though it is really rotating.
The misconception that knowledge needs authority to be genuine or reliable dates back to antiquity, and it still prevails. To this day, most courses in the philosophy of knowledge teach that knowledge is some form of justified, true belief, where ‘justified’ means designated as true (or at least ‘probable’) by reference to some authoritative source or touchstone of knowledge. Thus ‘how do we know…?’ is transformed into ‘by what authority do we claim…?’ The latter question is a chimera that may well have wasted more philosophers’ time and effort than any other idea. It converts the quest for
...more
Fallibilists expect even their best and most fundamental explanations to contain misconceptions in addition to truth, and so they are predisposed to try to change them for the better. In contrast, the logic of justificationism is to seek (and typically, to believe that one has found) ways of securing ideas against change.
Conan Doyle came much closer to the truth when, during ‘The Boscombe Valley Mystery’, he had Holmes remark that ‘circumstantial evidence’ (evidence about unwitnessed events) is ‘a very tricky thing…It may seem to point very straight to one thing, but if you shift your own point of view a little, you may find it pointing in an equally uncompromising manner to something entirely different…There is nothing more deceptive than an obvious fact.’
I am not asking what authority scientific knowledge is derived from, or rests on. I mean, literally, by what process do ever truer and more detailed explanations about the world come to be represented physically in our brains? How do we come to know about the interactions of subatomic particles during transmutation at the centre of a distant star, when even the tiny trickle of light that reaches our instruments from the star was emitted by glowing gas at the star’s surface, a million kilometres above where the transmutation is happening? Or about conditions in the fireball during the first few
...more
This highlight has been truncated due to consecutive passage length restrictions.
Rejecting authority in regard to knowledge was not just a matter of abstract analysis. It was a necessary condition for progress, because, before the Enlightenment, it was generally believed that everything important that was knowable had already been discovered, and was enshrined in authoritative sources such as ancient writings and traditional assumptions. Some of those sources did contain some genuine knowledge, but it was entrenched in the form of dogmas along with many falsehoods. So the situation was that all the sources from which it was generally believed knowledge came actually knew
...more
What was needed for the sustained, rapid growth of knowledge was a tradition of criticism. Before the Enlightenment, that was a very rare sort of tradition: usually the whole point of a tradition was to keep things the same. Thus the Enlightenment was a revolution in how people sought knowledge: by trying not to rely on authority. That is the context in which empiricism – purporting to rely solely on the senses for knowledge – played such a salutary historical role, despite being fundamentally false and even authoritative in its conception of how science works. One consequence of this
...more
Nevertheless, testability cannot have been the decisive factor in the scientific revolution either. Contrary to what is often said, testable predictions had always been quite common. Every traditional rule of thumb for making a flint blade or a camp fire is testable. Every would-be prophet who claims that the sun will go out next Tuesday has a testable theory. So does every gambler who has a hunch that ‘this is my lucky night – I can feel it’. So what is the vital, progress-enabling ingredient that is present in science, but absent from the testable theories of the prophet and the gambler? The
...more
This highlight has been truncated due to consecutive passage length restrictions.
There is always an explanation, whether we know it or not, for why a rule of thumb works. Denying that some regularity in nature has an explanation is effectively the same as believing in the supernatural – saying, ‘That’s not conjuring, it’s actual magic.’ Also, there is always an explanation when a rule of thumb fails, for rules of thumb are always parochial: they hold only in a narrow range of familiar circumstances. So, if an unfamiliar feature were introduced into a cups-and-balls trick, the rule of thumb I stated might easily make a false prediction. For instance, I could not tell from
...more
Popper wrote: I think that there is only one way to science – or to philosophy, for that matter: to meet a problem, to see its beauty and fall in love with it; to get married to it and to live with it happily, till death do ye part – unless you should meet another and even more fascinating problem or unless, indeed, you should obtain a solution. But even if you do obtain a solution, you may then discover, to your delight, the existence of a whole family of enchanting, though perhaps difficult, problem children… Realism and the Aim of Science (1983)
That freedom to make drastic changes in those mythical explanations of seasons is the fundamental flaw in them. It is the reason that myth-making in general is not an effective way to understand the world.
In general, when theories are easily variable in the sense I have described, experimental testing is almost useless for correcting their errors. I call such theories bad explanations. Being proved wrong by experiment, and changing the theories to other bad explanations, does not get their holders one jot closer to the truth. Because explanation plays this central role in science, and because testability is of little use in the case of bad explanations, I myself prefer to call myths, superstitions and similar theories unscientific even when they make testable predictions. But it does not matter
...more
This highlight has been truncated due to consecutive passage length restrictions.
Long before the Enlightenment, there were individuals who sought good explanations. Indeed, my discussion here suggests that all progress then, as now, was due to such people. But in most ages they lacked contact with a tradition of criticism in which others could carry on their ideas, and so created little that left any trace for us to detect. We do know of sporadic traditions of good-explanation-seeking in narrowly defined fields, such as geometry, and even short-lived traditions of criticism – mini-enlightenments – which were tragically snuffed out, as I shall describe in Chapter 9. But the
...more
The axis-tilt theory also predicts that the seasons will be out of phase in the two hemispheres. So if they had been found to be in phase, the theory would have been refuted, just as, in the event, the Persephone and Freyr myths were refuted by the opposite observation. But the difference is, if the axis-tilt theory had been refuted, its defenders would have had nowhere to go. No easily implemented change could make tilted axes cause the same seasons all over the planet. Fundamentally new ideas would have been needed. That is what makes good explanations essential to science: it is only when a
...more
Good explanations are often strikingly simple or elegant – as I shall discuss in Chapter 14. Also, a common way in which an explanation can be bad is by containing superfluous features or arbitrariness, and sometimes removing those yields a good explanation. This has given rise to a misconception known as ‘Occam’s razor’ (named after the fourteenth-century philosopher William of Occam, but dating back to antiquity), namely that one should always seek the ‘simplest explanation’. One statement of it is ‘Do not multiply assumptions beyond necessity.’ However, there are plenty of very simple
...more
Suppose for the sake of argument that you thought of the axis-tilt theory yourself. It is your conjecture, your own original creation. Yet because it is a good explanation – hard to vary – it is not yours to modify. It has an autonomous meaning and an autonomous domain of applicability. You cannot confine its predictions to a region of your choosing. Whether you like it or not, it makes predictions about places both known to you and unknown to you, predictions that you have thought of and ones that you have not thought of. Tilted planets in similar orbits in other solar systems must have
...more
The Enlightenment (The beginning of) a way of pursuing knowledge with a tradition of criticism and seeking good explanations instead of reliance on authority.
The real source of our theories is conjecture, and the real source of our knowledge is conjecture alternating with criticism. We create theories by rearranging, combining, altering and adding to existing ideas with the intention of improving upon them. The role of experiment and observation is to choose between existing theories, not to be the source of new ones. We interpret experiences through explanatory theories, but true explanations are not obvious. Fallibilism entails not looking to authorities but instead acknowledging that we may always be mistaken, and trying to correct errors. We do
...more
The better we come to understand phenomena remote from our everyday experience, the longer those chains of interpretation become, and every additional link necessitates more theory. A single unexpected or misunderstood phenomenon anywhere in the chain can, and often does, render the resulting sensory experience arbitrarily misleading. Yet, over time, the conclusions that science has drawn have become ever truer to reality. Its quest for good explanations corrects the errors, allows for the biases and misleading perspectives, and fills in the gaps. This is what we can achieve when, as Feynman
...more
The primary function of the telescope’s optics is to reduce the illusion that the stars are few, faint, twinkling and moving. The same is true of every feature of the telescope, and of all other scientific instruments: each layer of indirectness, through its associated theory, corrects errors, illusions, misleading perspectives and gaps. Perhaps it is the mistaken empiricist ideal of ‘pure’, theory-free observation that makes it seem odd that truly accurate observation is always so hugely indirect. But the fact is that progress requires the application of ever more knowledge in advance of our
...more
Explanatory theories tell us how to build and operate instruments in exactly the right way to work this miracle. Like conjuring tricks in reverse, such instruments fool our senses into seeing what is really there. Our minds, through the methodological criterion that I mentioned in Chapter 1, conclude that a particular thing is real if and only if it figures in our best explanation of something. Physically, all that has happened is that human beings, on Earth, have dug up raw materials such as iron ore and sand, and have rearranged them – still on Earth – into complex objects such as radio
...more
Before anything was known about how the world works, trying to explain physical phenomena in terms of purposeful, human-like thought and action may have been a reasonable approach. After all, that is how we explain much of our everyday experience even today: if a jewel is mysteriously missing from a locked safe, we seek human-level explanations such as error or theft (or, under some circumstances, conjuring), not new laws of physics. But that anthropocentric approach has never yielded any good explanations beyond the realm of human affairs. In regard to the physical world at large, it was
...more
Anthropocentric misconceptions have also been overturned in every other fundamental area of science: our knowledge of physics is now expressed entirely in terms of entities that are as impersonal as Euclid’s points and lines, such as elementary particles, forces and spacetime – a four-dimensional continuum with three dimensions of space and one of time. Their effects on each other are explained not in terms of feelings and intentions, but through mathematical equations expressing laws of nature. In biology, it was once thought that living things must have been designed by a supernatural
...more
It is easy to mistake quirks of one’s own, familiar environment or perspective (such as the rotation of the night sky) for objective features of what one is observing, or to mistake rules of thumb (such as the prediction of daily sunrises) for universal laws. I shall refer to that sort of error as parochialism.
This fundamental connection between explanatory knowledge and technology is why the Haldane–Dawkins queerer-than-we-can-suppose argument is mistaken – why the reach of human adaptations does have a different character from that of all the other adaptations in the biosphere. The ability to create and use explanatory knowledge gives people a power to transform nature which is ultimately not limited by parochial factors, as all other adaptations are, but only by universal laws. This is the cosmic significance of explanatory knowledge – and hence of people, whom I shall henceforward define as
...more
Using knowledge to cause automated physical transformations is, in itself, not unique to humans. It is the basic method by which all organisms keep themselves alive: every cell is a chemical factory. The difference between humans and other species is in what kind of knowledge they can use (explanatory instead of rule-of-thumb) and in how they create it (conjecture and criticism of ideas, rather than the variation and selection of genes). It is precisely those two differences that explain why every other organism can function only in a certain range of environments that are hospitable to it,
...more
The astrophysicist Martin Rees has speculated that somewhere in the universe ‘there could be life and intelligence out there in forms we can’t conceive. Just as a chimpanzee can’t understand quantum theory, it could be there are aspects of reality that are beyond the capacity of our brains.’ But that cannot be so. For if the ‘capacity’ in question is mere computational speed and amount of memory, then we can understand the aspects in question with the help of computers – just as we have understood the world for centuries with the help of pencil and paper. As Einstein remarked, ‘My pencil and I
...more
In addition to matter and energy, there is one other essential requirement, namely evidence: the information needed to test scientific theories. The Earth’s surface is rich in evidence. We happened to get round to testing Newton’s laws in the seventeenth century, and Einstein’s in the twentieth, but the evidence with which we did that – light from the sky – had been deluging the surface of the Earth for billions of years before that, and will continue to do so for billions more. Even today we have barely begun to examine that evidence: on any clear night, the chances are that your roof will be
...more
All people in the universe, once they have understood enough to free themselves from parochial obstacles, face essentially the same opportunities. This is an underlying unity in the physical world more significant than all the dissimilarities I have described between our environment and a typical one: the fundamental laws of nature are so uniform, and evidence about them so ubiquitous, and the connections between understanding and control so intimate, that, whether we are on our parochial home planet or a hundred million light years away in the intergalactic plasma, we can do the same science
...more
Many things are more obviously significant than people. Space and time are significant because they appear in almost all explanations of other physical phenomena. Similarly, electrons and atoms are significant. Humans seem to have no place in that exalted company. Our history and politics, our science, art and philosophy, our aspirations and moral values – all these are tiny side effects of a supernova explosion a few billion years ago, which could be extinguished tomorrow by another such explosion. Supernovae, too, are moderately significant in the cosmic scheme of things. But it seems that
...more
This highlight has been truncated due to consecutive passage length restrictions.
Like an explosive awaiting a spark, unimaginably numerous environments in the universe are waiting out there, for aeons on end, doing nothing at all or blindly generating evidence and storing it up or pouring it out into space. Almost any of them would, if the right knowledge ever reached it, instantly and irrevocably burst into a radically different type of physical activity: intense knowledge-creation, displaying all the various kinds of complexity, universality and reach that are inherent in the laws of nature, and transforming that environment from what is typical today into what could
...more
That a gene is adapted to a given function means that few, if any, small changes would improve its ability to perform that function. Some changes might make no practical difference to that ability, but most of those that did would make it worse. In other words good adaptations, like good explanations, are distinguished by being hard to vary while still fulfilling their functions.
Successive scientific explanations are occasionally dissimilar in the way they explain their predictions, even in the domain where the predictions themselves are similar or identical. For instance, Einstein’s explanation of planetary motion does not merely correct Newton’s: it is radically different, denying, among many other things, the very existence of central elements of Newton’s explanation, such as the gravitational force and the uniformly flowing time with respect to which Newton defined motion. Likewise the astronomer Johannes Kepler’s theory which said that the planets move in
...more
With the hindsight provided by each successive theory, we can see not only where the previous theory made false predictions, but also that wherever it made true predictions this was because it had expressed some truth about reality. So its truth lives on in the new theory – as Einstein remarked, ‘There could be no fairer destiny for any physical theory than that it should point the way to a more comprehensive theory in which it lives on as a limiting case.’
As I explained in Chapter 1, regarding the explanatory function of theories as paramount is not just an idle preference. The predictive function of science is entirely dependent on it. Also, in order to make progress in any field, it is the explanations in existing theories, not the predictions, that have to be creatively varied in order to conjecture the next theory. Furthermore, the explanations in one field affect our understanding of other fields. For instance, if someone thinks that a conjuring trick is due to supernatural abilities of the conjurer, it will affect how they judge theories
...more
As I explained in Chapter 1, even in science, almost all rejected theories are rejected for being bad explanations, without ever being tested. Experimental testing is only one of many methods of criticism used in science, and the Enlightenment has made progress by bringing those other methods to bear in non-scientific fields too. The basic reason that such progress is possible is that good explanations about philosophical issues are as hard to find as in science – and criticism is correspondingly effective.
Certainly you can’t derive an ought from an is, but you can’t derive a factual theory from an is either. That is not what science does. The growth of knowledge does not consist of finding ways to justify one’s beliefs. It consists of finding good explanations. And, although factual evidence and moral maxims are logically independent, factual and moral explanations are not. Thus factual knowledge can be useful in criticizing moral explanations. For example, in the nineteenth century, if an American slave had written a bestselling book, that event would not logically have ruled out the
...more
Quite generally, in order to understand the moral landscape in terms of a given set of values, one needs to understand some facts as being a certain way too. And the converse is also true: for example, as the philosopher Jacob Bronowski pointed out, success at making factual, scientific discoveries entails a commitment to all sorts of values that are necessary for making progress. The individual scientist has to value truth, and good explanations, and be open to ideas and to change. The scientific community, and to some extent the civilization as a whole, has to value tolerance, integrity and
...more
Beauty, right and wrong, primality, infinite sets – they all exist objectively. But not physically. What does that mean? Certainly they can affect you – as examples like Hofstadter’s show – but apparently not in the same sense that physical objects do. You cannot trip over one of them in the street. However, there is less to that distinction than our empiricism-biased common sense assumes. First of all, being affected by a physical object means that something about the physical object has caused a change, via the laws of physics (or, equivalently, that the laws of physics have caused a change
...more
Also, a writing system based on an alphabet can cover not only every word but every possible word in its language, so that words that have yet to be coined already have a place in it. Then, instead of each new word temporarily breaking the system, the system can itself be used to coin new words, in an easy and decentralized way.
Here is an even more speculative possibility. The largest benefits of any universality, beyond whatever parochial problem it is intended to solve, come from its being useful for further innovation. And innovation is unpredictable. So, to appreciate universality at the time of its discovery, one must either value abstract knowledge for its own sake or expect it to yield unforeseeable benefits. In a society that rarely experienced change, both those attitudes would be quite unnatural. But that was reversed with the Enlightenment, whose quintessential idea is, as I have said, that progress is
...more
This highlight has been truncated due to consecutive passage length restrictions.
Babbage originally had no conception of computational universality. Nevertheless, the Difference Engine already comes remarkably close to it – not in its repertoire of computations, but in its physical constitution. To program it to print out a given table, one initializes certain cogs. Babbage eventually realized that this programming phase could itself be automated: the settings could be prepared on punched cards like Jacquard’s, and transferred mechanically into the cogs. This would not only remove the main remaining source of error, but also increase the machine’s repertoire. Babbage then
...more
It is a remarkable fact that, in that sense (that is to say, ignoring issues of speed, memory capacity and input–output devices), the human ‘computers’ of old, the steam-powered Analytical Engine with its literal bells and whistles, the room-sized vacuum-tube computers of the Second World War, and present-day supercomputers all have an identical repertoire of computations. Another thing that they have in common is that they are all digital: they operate on information in the form of discrete values of physical variables, such as electronic switches being on or off, or cogs being at one of ten
...more
This highlight has been truncated due to consecutive passage length restrictions.
Genes in present-day organisms replicate themselves by a complicated and very indirect chemical route. In most species they act as templates for forming stretches of a similar molecule, RNA. Those then act as programs which direct the synthesis of the body’s constituent chemicals, especially enzymes, which are catalysts. A catalyst is a kind of constructor – it promotes a change among other chemicals while remaining unchanged itself. Those catalysts in turn control all the chemical production and regulatory functions of an organism, and hence define the organism itself, crucially including a
...more
Genes are replicators that can be interpreted as instructions in a genetic code. Genomes are groups of genes that are dependent on each other for replication. The process of copying a genome is called a living organism. Thus the genetic code is also a language for specifying organisms. At some point, the system switched to replicators made of DNA, which is more stable than RNA and therefore more suitable for storing large amounts of information.
In 1994 the computer scientist and molecular biologist Leonard Adleman designed and built a computer composed of DNA together with some simple enzymes, and demonstrated that it was capable of performing some sophisticated computations. At the time, Adleman’s DNA computer was arguably the fastest computer in the world. Further, it was clear that a universal classical computer could be made in a similar way. Hence we know that, whatever that other universality of the DNA system was, the universality of computation had also been inherent in it for billions of years, without ever being used –
...more
I think we have to face the fact, both with artificial evolution and with AI, that these are hard problems. There are serious unknowns in how those phenomena were achieved in nature. Trying to achieve them artificially without ever discovering those unknowns was perhaps worth trying. But it should be no surprise that it has failed. Specifically, we do not know why the DNA code, which evolved to describe bacteria, has enough reach to describe dinosaurs and humans. And, although it seems obvious that an AI will have qualia and consciousness, we cannot explain those things. So long as we cannot
...more