Hence, for instance, an individual electron always has a range of different locations and a range of different speeds and directions of motion. As a result, its typical behaviour is to spread out gradually in space. Its quantum-mechanical law of motion resembles the law governing the spread of an ink blot – so if it is initially located in a very small region it spreads out rapidly, and the larger it gets the more slowly it spreads. The entanglement information that it carries ensures that no two instances of it can ever contribute to the same history. (Or, more precisely, at times and places
...more