More on this book
Community
Kindle Notes & Highlights
40,000 kilometers: so that must be the circumference of the Earth.* This is the right answer. Eratosthenes’ only tools were sticks, eyes, feet and brains, plus a taste for experiment. With them he deduced the circumference of the Earth with an error of only a few percent, a remarkable achievement for 2,200 years ago. He was the first person accurately to measure the size of a planet.
But for the Enterprise of the Indies to work, for ships and crews to survive the long voyage, the Earth had to be smaller than Eratosthenes had said. Columbus therefore cheated on his calculations, as the examining faculty of the University of Salamanca quite correctly pointed out. He used the smallest possible circumference of the Earth and the greatest eastward extension of Asia he could find in all the books available to him, and then exaggerated even those. Had the Americas not been in the way, Columbus’ expeditions would have failed utterly.
museum (literally, an institution devoted to the specialties of the Nine Muses).
Cosmos is a Greek word for the order of the universe. It is, in a way, the opposite of Chaos. It implies the deep interconnectedness of all things.
We know now that our universe—or at least its most recent incarnation—is some fifteen or twenty billion years old.
The nature of life on Earth and the search for life elsewhere are two sides of the same question—the search for who we are.
The rabbit was not domesticated until early medieval times (it was bred by French monks in the belief that newborn bunnies were fish and therefore exempt from the prohibitions against eating meat on certain days in the Church calendar); coffee in the fifteenth century; the sugar beet in the nineteenth century; and the mink is still in the earliest stages of domestication.
The fossil evidence could be consistent with the idea of a Great Designer; perhaps some species are destroyed when the Designer becomes dissatisfied with them, and new experiments are attempted on an improved design. But this notion is a little disconcerting. Each plant and animal is exquisitely made; should not a supremely competent Designer have been able to make the intended variety from the start? The fossil record implies trial and error, an inability to anticipate the future, features inconsistent with an efficient Great Designer (although not with a Designer of a more remote and
...more
Life had arisen almost immediately after the origin of the Earth, which suggests that life may be an inevitable chemical process on an Earth-like planet. But life did not evolve much beyond blue-green algae for three billion years, which suggests that large lifeforms with specialized organs are hard to evolve, harder even than the origin of life.
We humans look rather different from a tree. Without a doubt we perceive the world differently than a tree does. But down deep, at the molecular heart of life, the trees and we are essentially identical.
There is an order, a predictability, a permanence about the stars. In a way, they are almost comforting.
The reappearance of the crescent moon after the new moon; the return of the Sun after a total eclipse; the rising of the Sun in the morning after its troublesome absence at night were noted by people around the world: these phenomena spoke to our ancestors of the possibility of surviving death. Up there in the skies was also a metaphor of immortality.
The more accurately you knew the position and movements of the Sun and Moon and stars, the more reliably you could predict when to hunt, when to sow and reap, when to gather the tribes. As precision of measurement improved, records had to be kept, so astronomy encouraged observation and mathematics and the development of writing.
Astronomy is a science—the study of the universe as it is. Astrology is a pseudoscience—a claim, in the absence of good evidence, that the other planets affect our everyday lives.
In 1616 the Catholic Church placed Copernicus’ work on its list of forbidden books “until corrected” by local ecclesiastical censors, where it remained until 1835.*
At the Stourbridge Fair in 1663, at age twenty, he purchased a book on astrology, “out of a curiosity to see what there was in it.” He read it until he came to an illustration which he could not understand, because he was ignorant of trigonometry. So he purchased a book on trigonometry but soon found himself unable to follow the geometrical arguments. So he found a copy of Euclid’s Elements of Geometry, and began to read. Two years later he invented the differential calculus.
“I do not know what I may appear to the world; but to myself I seem to have been only like a boy, playing on the seashore, and diverting myself, in now and then finding a smoother pebble or a prettier shell than ordinary, while the great ocean of truth lay all undiscovered before me.”
But science is a self-correcting enterprise. To be accepted, all new ideas must survive rigorous standards of evidence.
Science is generated by and devoted to free inquiry: the idea that any hypothesis, no matter how strange, deserves to be considered on its merits. The suppression of uncomfortable ideas may be common in religion and politics, but it is not the path to knowledge; it has no place in the endeavor of science. We do not know in advance who will discover fundamental new insights.
He developed a small device to be sent to the planets. His friends called it the Wolf Trap. It would carry a little vial of nutrient organic matter to Mars, arrange for a sample of Martian soil to be mixed with it, and observe the changing turbidity or cloudiness of the liquid as the Martian bugs (if there were any) grew (if they would). The Wolf Trap was selected along with three other microbiology experiments to go aboard the Viking landers.
In 1971 it was decided that one of the four microbiology experiments must be removed, and the Wolf Trap was off-loaded. It was a crushing disappointment for Vishniac, who had invested twelve years in its development.
I am a collection of water, calcium and organic molecules called Carl Sagan. You are a collection of almost identical molecules with a different collective label. But is that all? Is there nothing in here but molecules? Some people find this idea somehow demeaning to human dignity. For myself, I find it elevating that our universe permits the evolution of molecular machines as intricate and subtle as we.
Growing up in this environment, the young Christiaan Huygens became simultaneously adept in languages, drawing, law, science, engineering, mathematics and music. His interests and allegiances were broad. “The world is my country,” he said, “science my religion.”
Indeed, he said, Copernicus was acknowledged by all astronomers except those who “were a bit slow-witted or under the superstitions imposed by merely human authority.”
The volcanoes of Io were predicted, before they were discovered, by Stanton Peale and his co-workers, who calculated the tides that would be raised in the solid interior of Io by the combined pulls of the nearby moon Europa and the giant planet Jupiter.
China and India and Mesoamerica would, I think, have tumbled to science too, if only they had been given a little more time. Cultures do not develop with identical rhythms or evolve in lock-step. They arise at different times and progress at different rates. The scientific world view works so well, explains so much and resonates so harmoniously with the most advanced parts of our brains that in time, I think, virtually every culture on the Earth, left to its own devices, would have discovered science.
Chinese astronomy thereafter underwent a steep decline. Nathan Sivin believes that the reason lies at least partly “in increasing rigidity of elite attitudes, so that the educated were less inclined to be curious about techniques and less willing to value science as an appropriate pursuit for a gentleman.”
The resistance to Aristarchus and Copernicus, a kind of geocentrism in everyday life, remains with us: we still talk about the Sun “rising” and the Sun “setting.” It is 2,200 years since Aristarchus, and our language still pretends that the Earth does not turn.
The fact that Aristarchus and Huygens used imprecise data and derived imperfect answers hardly matters. They explained their methods so clearly that, when better observations were available, more accurate answers could be derived.
The American mathematician Edward Kasner once asked his nine-year-old nephew to invent a name for an extremely large number—ten to the power one hundred (10100), a one followed by a hundred zeroes. The boy called it a googol. Here it is: 10, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000. You, too, can make up your own very large numbers and give them strange names. Try it. It has a certain charm, especially if you happen to be nine.
Was there a tiny universe, devoid of all matter, and then the matter suddenly created from nothing? How does that happen? In many cultures it is customary to answer that God created the universe out of nothing. But this is mere temporizing. If we wish courageously to pursue the question, we must of course ask next where God comes from. And if we decide this to be unanswerable, why not save a step and decide that the origin of the universe is an unanswerable question. Or, if we say that God has always existed, why not save a step and conclude that the universe has always existed?
Meanwhile, elsewhere, there are an infinite number of other universes, each with its own god dreaming the cosmic dream. These great ideas are tempered by another, perhaps still greater. It is said that men may not be the dreams of the gods, but rather that the gods are the dreams of men.
Modern radio telescopes are exquisitely sensitive; a distant quasar is so faint that its detected radiation amounts perhaps to a quadrillionth of a watt.
Nobody listens to mathematicians.
A book is made from a tree. It is an assemblage of flat, flexible parts (still called “leaves”) imprinted with dark pigmented squiggles. One glance at it and you hear the voice of another person—perhaps someone dead for thousands of years. Across the millennia, the author is speaking, clearly and silently, inside your head, directly to you. Writing is perhaps the greatest of human inventions, binding together people, citizens of distant epochs, who never knew one another. Books break the shackles of time, proof that humans can work magic.
Books are like seeds. They can lie dormant for centuries and then flower in the most unpromising soil.
I think the health of our civilization, the depth of our awareness about the underpinnings of our culture and our concern for the future can all be tested by how well we support our libraries.
In the Milky Way Galaxy there must be many planets millions of years older than Earth, and some that are billions of years older. Should we not have been visited? In all the billions of years since the origin of our planet, has there not been even once a strange craft from a distant civilization surveying our world from above, and slowly settling down to the surface to be observed by iridescent dragonflies, incurious reptiles, screeching primates or wondering humans?
the sunlight revealed to us all the details … We in Europe are only dwarfs and no nation, ancient or modern, has conceived the art of architecture on such a sublime, great, and imposing style, as the ancient Egyptians. They ordered everything to be done for people who are a hundred feet high.
Any technology able to detect radiation of any wavelength would fairly soon stumble on the radio part of the spectrum.
How much more likely it is that technical civilizations are a cosmic commonplace, that the Galaxy is pulsing and humming with advanced societies, and, therefore, that the nearest such culture is not so very far away—perhaps transmitting from antennas established on a planet of a naked-eye star just next door. Perhaps when we look up at the sky at night, near one of those faint pinpoints of light is a world on which someone quite different from us is then glancing idly at a star we call the Sun and entertaining, for just a moment, an outrageous speculation.
Written out, the equation reads N = N*pfenlfifcfL. All the f’s are fractions, having values between 0 and 1; they will pare down the large value of N*.
On any planet, no matter what its biology or social system, an exponential increase in population will swallow every resource.
But the most likely case is that interstellar communication will be a kind of palimpsest, like the palimpsests of ancient writers short of papyrus or stone who superimposed their messages on top of preexisting messages. Perhaps at an adjacent frequency or a faster timing, there would be another message, which would turn out to be a primer, an introduction to the language of interstellar discourse. The primer would be repeated again and again because the transmitting civilization would have no way to know when we tuned in on the message. And then, deeper in the palimpsest, underneath the
...more