More on this book
Community
Kindle Notes & Highlights
Modern popular astrology runs directly back to Claudius Ptolemaeus, whom we call Ptolemy, although he was unrelated to the kings of the same name. He worked in the Library of Alexandria in the second century. All that arcane business about planets ascendant in this or that solar or lunar “house” or the “Age of Aquarius” comes from Ptolemy, who codified the Babylonian astrological tradition.
Ptolemy believed not only that behavior patterns were influenced by the planets and the stars but also that questions of stature, complexion, national character and even congenital physical abnormalities were determined by the stars.
Finally, in 1543, a quite different hypothesis to explain the apparent motion of the planets was published by a Polish Catholic cleric named Nicholas Copernicus. Its most daring feature was the proposition that the Sun, not the Earth, was at the center of the universe. The Earth was demoted to just one of the planets, third from the Sun, moving in a perfect circular orbit. (Ptolemy had considered such a heliocentric model but rejected it immediately;
He was distracted by an incessant interior clamor of associations and speculations vying for his attention.
Kepler had found that Mars moves about the Sun not in a circle, but in an ellipse.
When a given planet is at its nearest to the Sun, it speeds up. When it is at its farthest, it slows down. Such motion is why we describe the planets as forever falling toward, but never reaching, the Sun.
The inner planets move rapidly in their orbits—that is why Mercury has the name it does: Mercury was the messenger of the gods. Venus, Earth and Mars move progressively less rapidly about the Sun. The outer planets, such as Jupiter and Saturn, move stately and slow, as befits the kings of the gods.
the more distant the planet, the more slowly it moves, but according to a precise mathematical law: P2 = a3, where P represents the period of revolution of the planet about the Sun, measured in years, and a the distance of the planet from the Sun measured in “astronomical units.”
An astronomical unit is the distance of the Earth from the Sun.
Jupiter, for example, is five astronomical units from the Sun, and a3 = 5 × 5 × 5 = 125. What number times itself equals 125? Why, 11, close enough. And 11 years is the period for Jupiter to go once around the Sun. A simil...
This highlight has been truncated due to consecutive passage length restrictions.
Newton discovered the law of inertia, the tendency of a moving object to continue moving in a straight line unless something influences it and moves it out of its path.
It is a law of the inverse square. The force declines inversely as the square of distance. If two objects are moved twice as far away, the gravity now pulling them together is only one-quarter as strong. If they are over ten times farther away, the gravity is ten squared, 102 = 100 times smaller.
A comet is made mostly of ice—water (H2O) ice, with a little methane (CH4) ice, and some ammonia (NH3) ice.
Striking the Earth’s atmosphere, a modest cometary fragment would produce a great radiant fireball and a mighty blast wave, which would burn trees, level forests and be heard around the world. But it might not make much of a crater in the ground. The ices would all be melted during entry. There would be few recognizable pieces of the comet left—perhaps only a smattering of small grains from the non-icy parts of the cometary nucleus.
Meteors are the remnants of comets.* Old comets, heated by repeated passages near the Sun, break up, evaporate and disintegrate. The debris spreads to fill the full cometary orbit. Where that orbit intersects the orbit of the Earth, there is a swarm of meteors waiting for us. Some part of the swarm is always at the same position in the Earth’s orbit, so the meteor shower is always observed on the same day of every year.
Why are the planetary orbits nearly circular and neatly separated one from the other? Because if planets had very elliptical orbits, so that their paths intersected, sooner or later there would be a collision. In the early history of the solar system, there were probably many planets in the process of formation. Those with elliptical crossing orbits tended to collide and destroy themselves. Those with circular orbits tended to grow and survive. The orbits of the present planets are the orbits of the survivors of this collisional natural selection, the stable middle age of a solar system
...more
Matter blown outwards from the Sun’s atmosphere, the solar wind, carries fragments of dust and ice back behind the comet, making an incipient tail.
Sooner or later comets will collide with planets. The Earth and its companion the Moon must be bombarded by comets and small asteroids, debris left over from the formation of the solar system. Since there are more small objects than large ones, there should be more impacts by small objects than by large ones. An impact of a small cometary fragment with the Earth, as at Tunguska, should occur about once every thousand years. But an impact with a large comet, such as Halley’s Comet, whose nucleus is perhaps twenty kilometers across, should occur only about once every billion years.
Impact craters are not restricted to the Moon. We find them throughout the inner solar system—from Mercury, closest to the Sun, to cloud-covered Venus to Mars and its tiny moons, Phobos and Deimos.
Thus, very roughly, craters on the Moon should be formed today at the rate of about 109 years/104 craters, = 105 years/crater, a hundred thousand years between cratering events.
The Earth is very near the Moon. If the Moon is so severely cratered by impacts, how has the Earth avoided them? Why is Meteor Crater so rare? Do the comets and asteroids think it inadvisable to impact an inhabited planet? This is an unlikely forbearance. The only possible explanation is that impact craters are formed at very similar rates on both the Earth and the Moon, but that on the airless, waterless Moon they are preserved for immense periods of time, while on the Earth slow erosion wipes them out or fills them in. Running water, windblown sand and mountain-building are very slow
...more
The asteroid belt may be a place where a planet was once prevented from forming because of the gravitational tides of the giant nearby planet Jupiter; or it may be the shattered remains of a planet that blew itself up. This seems improbable because no scientist on Earth knows how a planet might blow itself up, which is probably just as well.
Science is generated by and devoted to free inquiry: the idea that any hypothesis, no matter how strange, deserves to be considered on its merits. The suppression of uncomfortable ideas may be common in religion and politics, but it is not the path to knowledge; it has no place in the endeavor of science. We do not know in advance who will discover fundamental new insights.
When an intense beam of ordinary white light passes through a narrow slit and then through a prism or grating, it is spread into a rainbow of colors called a spectrum. The spectrum runs from high frequencies* of visible light to low ones—violet, blue, green, yellow, orange and red. Since we see these colors, it is called the spectrum of visible light. But there is far more light than the small segment of the spectrum we can see. At higher frequencies, beyond the violet, is a part of the spectrum called the ultraviolet: a perfectly real kind of light, carrying death to the microbes. It is
...more
Beyond the infrared is the vast spectral region of the radio waves. From gamma rays to radio waves, all are equally respectable brands of light. All are useful in astronomy. But because of the limitations of our eyes, we have a prejudice, a bias, toward that tiny rainbow band we call the spectrum of visible light.
It turns out that, with respect to the stars, Venus turns once every 243 Earth days, but backwards, in the opposite direction from all other planets in the inner solar system.
The surface temperatures on Venus, as deduced from radio astronomy and confirmed by direct spacecraft measurements, are around 480°C or 900°F, hotter than the hottest household oven.
In ordinary visible light, the faintly yellowish clouds of Venus can be made out, but they show, as Galileo first noted, virtually no features at all. If the cameras look in the ultraviolet, however, we see a graceful, complex swirling weather system in the high atmosphere, where the winds are around 100 meters per second, some 220 miles per hour. The atmosphere of Venus is composed of 96 percent carbon dioxide.
The clouds of Venus turn out to be chiefly a concentrated solution of sulfuric acid. Small quantities of hydrochloric acid and hydrofluoric acid are also present. Even at its high, cool clouds, Venus turns out to be a thoroughly nasty place.
It is always raining sulfuric acid on Venus, all over the planet, and not a drop ever reaches the surface.
The atmospheric pressure is so high, however, that we cannot see the surface. Sunlight is bounced about by atmospheric molecules until we lose all images from the surface. There is no dust here, no clouds, just an atmosphere getting palpably denser. Plenty of sunlight is transmitted by the overlying clouds, about as much as on an overcast day on the Earth.
Venus is a kind of planet-wide catastrophe. It now seems reasonably clear that the high surface temperature comes about through a massive greenhouse effect. Sunlight passes through the atmosphere and clouds of Venus, which are semi-transparent to visible light, and reaches the surface. The surface being heated endeavors to radiate back into space. But because Venus is much cooler than the Sun, it emits radiation chiefly in the infrared rather than the visible region of the spectrum. However, the carbon dioxide and water vapor† in the Venus atmosphere are almost perfectly opaque to infrared
...more
Mars seems, at first glance, very Earthlike. It is the nearest planet whose surface we can see. There are polar ice caps, drifting white clouds, raging dust storms, seasonally changing patterns on its red surface, even a twenty-four-hour day. It is tempting to think of it as an inhabited world.
The first two letters of the name Pluto are the initials of Percival Lowell. Its symbol is , a planetary monogram.
good “seeing,” the astronomer’s term for a steady atmosphere through which the shimmering of an astronomical image in the telescope is minimized. Bad seeing is produced by small-scale turbulence in the atmosphere above the telescope and is the reason the stars twinkle.
Open bodies of liquid water are impossible today because the atmospheric pressure on Mars is too low to keep even cold water from rapidly boiling.
Perhaps there are large lifeforms on Mars, but not in our two landing sites. Perhaps there are smaller forms in every rock and sand grain. For most of its history, those regions of the Earth not covered by water looked rather like Mars today—with an atmosphere rich in carbon dioxide, with ultraviolet light shining fiercely down on the surface through an atmosphere devoid of ozone. Large plants and animals did not colonize the land until the last 10 percent of Earth history. And yet for three billion years there were microorganisms everywhere on Earth. To look for life on Mars, we must look for
...more
Viking has two eyes as we do, but they also work in the infrared, as ours do not; a sample arm that can push rocks, dig and acquire soil samples; a kind of finger that it puts up to measure wind speed and direction; a nose and taste buds, of a sort, with which it senses, to a much higher precision than we can,
The spacecraft has its own self-contained radioactive power source. It radios all the scientific information it acquires back to Earth. It receives instructions from Earth, so human beings can ponder the significance of the Viking results and tell the spacecraft to do something new.
The National Aeronautics and Space Administration, which runs the United States planetary space program, is subject to frequent and unpredictable budget cuts. Only rarely are there unanticipated budget increases. NASA scientific activities have very little effective support in the government, and so science is most often the target when money needs to be taken away from NASA.
When we look for life on a planet, we are making certain assumptions. We try, as well as we can, not to assume that life elsewhere will be just like life here. But there are limits to what we can do. We know in detail only about life here.
Even so, the results of Banin and Rishpon are of great biological importance because they show that in the absence of life there can be a kind of soil chemistry that does some of the same things life does.
Could my fondness for materials have something to do with the fact that I am made chiefly of them? Are we carbon- and water-based because those materials were abundant on the Earth at the time of the origin of life? Could life elsewhere—on Mars, say—be built of different stuff?
The surface area of Mars is exactly as large as the land area of the Earth.
there is life on Mars, I believe we should do nothing with Mars. Mars then belongs to the Martians, even if the Martians are only microbes. The existence of an independent biology on a nearby planet is a treasure beyond assessing, and the preservation of that life must, I think, supersede any other possible use of Mars.
This general concept is called terraforming: the changing of an alien landscape into one more suitable for human beings.
Voyages to the outer solar system are controlled from a single place on the planet Earth, the Jet Propulsion Laboratory (JPL) of the National Aeronautics and Space Administration in Pasadena, California.
Voyager relies on a small nuclear power plant, drawing hundreds of watts from the radioactive decay of a pellet of plutonium. Its three integrated computers and most of its house-keeping functions—for example, its temperature-control system—are localized in its middle. It receives commands from Earth and radios its findings back to Earth through a large antenna, 3.7 meters in diameter.
Jupiter is surrounded by a shell of invisible but extremely dangerous high-energy charged particles. The spacecraft must pass through the outer edge of this radiation belt to examine Jupiter
Voyager’s passage by Jupiter accelerated it toward a close encounter with Saturn. Saturn’s gravity will propel it on to Uranus. After Uranus it will plunge on past Neptune, leaving the solar system, becoming an interstellar spacecraft, fated to roam forever the great ocean between the stars.