More on this book
Community
Kindle Notes & Highlights
Read between
May 19 - November 25, 2016
God was a mathematician, seventeenth-century scientists firmly believed. He had written His laws in a mathematical code. Their task was to find the key.
All these thinkers had two traits in common. They were geniuses, and they had utter faith that the universe had been designed on impeccable mathematical lines. What follows is the story of a group of scientists who set out to read God’s mind.
ludicrously versatile Christopher Wren. Ideas
tumbled from him like coins from a conjuror’s fingertips. Posterity would know Wren as the most celebrated architect in English history, but he was renowned as an astronomer and a mathematician before he sketched his first building. Everything came easily to this charmed and charming creature. Early on an admirer proclaimed Wren a “miracle of youth,” and he would live to ninety-one and scarcely pause for breath along the way. Wren built telescopes, microscopes, and barometers; he tinkered with designs for submarines; he built a transparent beehive (to see what the bees were up to) and a
...more
The seventeenth century was God-fearing in the most literal sense. Natural disasters were divine messages, warnings to sinful mankind to change its ways lest an angry and impatient God unleash still further rounds of punishment. Even today insurance claims refer to earthquakes and floods as “acts of God.” In the 1600s and long beyond, our ancestors invoked the same phrase, but they spoke of God’s mysterious will with fright and cowering awe.
The greatest scientists of the age, Isaac Newton chief among them, believed as fervently as everyone else that they lived in the shadow of the apocalypse. Every era lives with contradictions that it manages to ignore. The Greeks talked of justice and kept slaves. The Crusaders preached the gospel of the Prince of Peace and rode off to annihilate the infidels. The seventeenth century believed in a universe that ran like clockwork, entirely in accord with natural law, and also in a God who reached down into the world to perform miracles and punish sinners.
Newton devoted thousands of hours—as much time as he spent on the secrets of gravity or light—in looking for concealed messages in the dimensions of the Temple of Solomon and trying to match the prophecies in Revelation with the battles and revolutions of later days.
Was it the poor who carried this disease? The lord mayor tried to restrict the movements of the “Multitude of Rogues and wandering Beggars that swarm in every place about the City, being a great cause of the spreading of the Infection.” Were animals the culprits? In the summer of 1665, the authorities called for the immediate killing of all cats and dogs. Orders went out to Londoners to kill “all their dogs of what sort or kind before Thursday next at ye furthest.”6 Thousands upon thousands of cats and dogs were killed. The result was to send the rat population soaring.
The 1660s did not mark the end of time but the beginning of the modern age. We can hardly blame them for getting it wrong—the earliest scientists looked out at a world that was filthy and chaotic, a riot of noise, confusion, and sudden, arbitrary death.
Newton went so far as to insist that ancient thinkers knew all about gravity, too, including the specifics of the law of universal gravitation, the very law that all the world considered Newton’s greatest discovery. God had revealed those truths long ago, but they had been lost. The ancient Egyptians and Hebrews had rediscovered them. So had the Greeks, and, now, so had Newton.
“All disorder,” wrote Alexander Pope, was “harmony not understood.”
To a degree we can scarcely imagine, the 1600s were a God-drenched era. “People rarely thought of themselves as ‘having’ or ‘belonging to’ a religion,” notes the cultural historian Jacques Barzun, “just as today nobody has ‘a physics’; there is only one and it is automatically taken to be the transcript of reality.”
Only the truths of mathematics seemed tamper-proof. Not even God could make a circle with corners.
Nineteen centuries later, Galileo found the laws that govern falling objects on Earth. After he showed the way, the discoveries came in a flood.
The universe had been meticulously arranged, Galileo and Kepler and Newton demonstrated, and the arrangement was the work of a brilliant geometer.
Then came an amazing leap. It was not simply that one aspect of nature or another followed mathematical law; mathematics governed every aspect of the cosmos, from a pencil falling off a table to a planet wandering among the stars.
As able as the Greeks had been, they never found a way around one fundamental obstacle. They had nothing to say about motion.
The conceptual breakthrough was called calculus. It was the key that opened the way to the modern age, and it made possible countless advances throughout science.
If science is a cathedral, it was Descartes who set many of its foundation stones in place.
Alchemy, which was a scientific quest for a magical-sounding goal, provides perhaps the most striking example of the coexistence of old and new. The aim was to find a substance called the “philosopher’s stone,” despite its name a liquid, which held the power to transform ordinary substances into silver and gold and to convey immortality to anyone who drank it.
And it is true that in time alchemy gave rise to chemistry, and that Newton’s approach to alchemy was methodical and absolutely rigorous. But it would be a mistake to conclude that Newton was a chemist in a sorcerer’s hat.
The Royal Society’s motto was “Nullius in Verba,” Latin for, roughly, “Don’t take anyone’s word for it,” and early investigators embraced that freedom with something akin to giddiness.
In a group portrait, the men—the company was all male—would have looked more or less alike, but that was largely because everyone wore wigs. (In England and France, fashion followed the court. When Charles II began to go gray, and when the Sun King’s hairs began to clog the royal hairbrush, the monarchs donned wigs, and soon no gentleman in Europe would venture out in public in his own hair.)
It’s always the case that history is a tale told by the victors. But the triumph of the scientific worldview has been so complete that we’ve lost more than the losing side’s version of history. We’ve lost the idea that a view different from ours is even possible. Today we take for granted that originality is a word of praise. New strikes us as nearly synonymous with improved. But for nearly all of human history, a new idea was a dangerous idea.
The believers’ task, then, was to defer to authority and refrain from asking questions, literally to “take it on faith.” Augustine railed against the sin of curiosity with a fury and revulsion that, to modern ears, sound almost unhinged. Curiosity was, he wrote, a form of lust as despicable as any lusting of the flesh.
When the early scientists finally presumed to challenge that age-old dogma, traditionally minded thinkers sputtered in fury. No testimony was good enough for these maddening newcomers. “If the wisest men in the world tell them that they see it or know it; if the workers of miracles, Christ and his apostles, tell them that they see it; if God himself tells them that He sees it,” one theologian thundered, “yet all this does not satisfy them unless they may see it themselves.”
For millennia, in one historian’s words, an intellectual’s “first duty” had been “absorbing, classifying, and preserving the known rather than exploring pastures new.”
The Royal Society pushed for a radically new approach: knowledge would advance more quickly if new findings were discussed openly and published for all to read.
Science was a game that anyone could play, which meant that everything was up for grabs. Anyone could propose a new idea, and no idea was exempt from challenge. This is the sense in which the scientific revolution was indeed revolutionary.
Even the most gruesome tortures served as spectacle and entertainment. (One history of seventeenth-century London includes an outing to watch a hanging in a section titled “Excursions.”)
London Bridge, more or less the shopping mall of its day, had been adorned for centuries with traitors’ heads impaled on spikes. In Queen Elizabeth’s day the bridge’s southern gate bristled with some thirty heads.15
Even children’s games routinely featured the torment of animals. “No wonder,” the historian Keith Thomas writes, “that traditional nursery rhymes portray blind mice having their tails cut off with a carving knife, blackbirds in a pie, and pussy in the well.” Experiments on dogs were considered entertaining as well as informative.
When the Greeks looked to the sky, they saw the sun, the moon, and the planets moving imperturbably on their eternal rounds.20 The planets traced complicated paths (planet is Greek for “wanderer”), but they continued on their way, endlessly.
Aristotle had explained how it all works, both in the heavens and on Earth, about three hundred years before the birth of Christ. For nearly two thousand years everyone found his scheme satisfactory. All earthly objects were formed from earth, air, fire, and water. The heavens were composed of a fifth element or essence, the quintessence, a pure, eternal substance, and it was only in that perfect, heavenly domain that mathematical law prevailed. Why do everyday, earthly objects move? Because everything has a home where it belongs and where it returns at the first opportunity. Rocks and other
...more
The new scientists would strip away all talk of “purpose.” In the new way of thinking, rocks don’t want to go anywhere; they just fall. The universe has no goals. But even today, though we have had centuries to adapt to the new ideas, the old views still exert a hold. We cannot help attributing goals and purposes to lifeless nature, and we endlessly anthropomorphize. “Nature abhors a vacuum,” we say, and “water seeks its own level.” On a cold morning we talk about the car starting “reluctantly” and then “dying,” and if it just won’t start we pound the dashboard in frustration and mutter,
...more
It was Galileo more than any other single figure who finally did away with Aristotle. Galileo’s great coup was to show that for once the Greeks had been too cautious. Not only were the heavens built according to a mathematical plan, but so was the ordinary, earthly realm. The path of an arrow shot from a bow could be predicted as accurately as the timing of an eclipse of the sun.
Peel away the world of appearances, said Galileo, and you find the real world beneath. The world consists exclusively of particles in motion, pool balls colliding on a vast table. All the complexity around us rises out of that simplicity.
After Galileo and Newton, the historian of science Charles C. Gillispie has written, science would “communicate in the language of mathematics, the measure of quantity,” a language “in which no terms exist for good or bad, kind or cruel . . . or will and purpose and hope.” The word force, for example, Gillispie noted, “would no longer mean ‘personal power’ but ‘mass-times-acceleration.’ ”
Aristotle’s why explained the world, Galileo’s how described it.
Aristotle had an excellent answer to the question why do rocks fall when you drop them? Galileo proposed not a different answer or a better one, but no answer at all. People do not “know a thing until they have grasped the ‘why’ of it,” Aristotle insisted, but Galileo would have none of it. To ask why things happen, he declared, was “not a necessary part of the investigation.” And that change was only the beginning.
It was a Polish cleric and astronomer named Nicolaus Copernicus who had struck the first and hardest blow against common sense. Despite the evidence, plain to every child, that we live on solid ground and that the sun travels around us, Copernicus argued that everyone has it all wrong. The Earth travels around the sun, and it spins like a top as it travels. And no one feels a thing.
(Isaac Newton was born in the year that Galileo died. That was coincidence, but in hindsight it seemed to presage England’s rise to scientific preeminence and Italy’s long drift to mediocrity. What was not coincidence was that seventeenth-century England welcomed science, on the grounds that science supported religion, and thrived; and seventeenth-century Italy feared science, on the grounds that science undermined religion, and decayed.)
Religion aside, the scientific objections were enormous. If Copernicus was right, the Earth was speeding along a gigantic racetrack at tens of thousands of miles an hour, and none of the passengers suffered so much as a mussed hair. The fastest that any traveler had ever moved was roughly twenty miles an hour, on horseback. These arguments came from the most esteemed scholars, not from yokels.
But Copernicus’s new doctrine inspired fear as well as ridicule and confusion, because it led almost at once to questions that transcended science. If the Earth was only one planet among many, were those other worlds inhabited, too? By what sort of creatures? Had Christ died for their sins? Did they have their own Adam and Eve, and what did that say about evil and original sin? “Worst of all,” in the words of the historian of science Thomas Kuhn, “if the universe is infinite, as many of the later Copernicans thought, where can God’s Throne be located? In an infinite universe, how is man to
...more
Copernicus did not have answers, nor did he have anything to say about what keeps the planets in their orbits or what holds the stars in place. The Greeks had provided such answers, and the answers had stood for millennia. (Each planet occupied a spot on an immense, transparent sphere. The spheres were nested, one inside the other, and centered on the Earth. The stars occupied the biggest, most distant sphere of all. As the spheres turned, they carried the planets and the stars with them.)
Decades before, Copernicus’s pushing of the Earth off center stage had inspired similar questions and similar fears, but among a smaller audience. Galileo had far more impact. Anyone could look through a telescope, while almost no one could follow a mathematical argument. But whether Copernicus or Galileo took the role of narrator, the story was the same. The Earth was not the center of the universe but a run-of-the-mill planet in a random corner of the cosmos. This stripping away of Earth’s special status is always cited as a great assault on human pride. Freud famously contended, for
...more
In the cosmic geography of the day, heaven and hell were actual places. Hell was not consigned to some vague location “below” but sat deep inside the Earth with its center directly beneath Jerusalem. The Earth was the center of the universe, and hell was the center of the center. Galileo’s adversary Cardinal Bellarmine spelled out why that was so. “The place of devils and wicked damned men should be as far as possible from the place where angels and blessed men will be forever. The abode of the blessed (as our adversaries agree) is Heaven, and no place is further removed from Heaven than the
...more
Both the microscope and the telescope fascinated the seventeenth century’s intelligentsia, not just its scientists. The telescope tended to produce unwelcome musings on man’s puniness, as we have seen, but the picture of worlds within worlds revealed by the microscope did not trouble most people.
In any case, both telescope and microscope strengthened the case for God as designer. The ordinary world had already provided countless examples of God’s craftsmanship. “Were men and beast made by fortuitous jumblings of atoms,” Newton wrote contemptuously, “there would be many parts useless in them—here a lump of flesh, there a member too much.” Now the microscope showed that God had done meticulous work even in secret realms that man had never known. Unlike those furniture makers, say, who lavished all their care on the front of their bureaus and desks but neglected surfaces destined to stay
...more
But the renewed emphasis on God-the-mathematician came mostly by way of a different, stranger path. One of the seventeenth century’s most deeply held beliefs had to do with the so-called great chain of being. The central idea was that all the objects that had ever been created—grains of sand, chunks of gold, earthworms, lions, human beings, devils, angels—occupied a particular rank in a great chain that extended from the lowest of the low to the hem of God’s garment.