Solutions to exercises in Introduction to logic

Reader Q&A

To ask other readers questions about Solutions to exercises in Introduction to logic, please sign up.

Answered Questions (1)

Jason Turner 1.) ~(~O v R) v S is equivalent to ~(~O v R) v S
2.) ~(If O then R) v S
3.) (If O then ~R) v S
4.) (O and ~R) v S
5.) S v (O and ~R)
6.) (S v O) and (S v …more
1.) ~(~O v R) v S is equivalent to ~(~O v R) v S
2.) ~(If O then R) v S
3.) (If O then ~R) v S
4.) (O and ~R) v S
5.) S v (O and ~R)
6.) (S v O) and (S v ~R)
If all that is given is ~(~O v R) v S, then #6 is all the final conclusion that can be arrived at.

~(~O v R) v ~S
R
1.) ~(If O then R) v ~S
2.) (If O then ~R) v ~S
3.) (O and ~R) v ~S
4.) ~S v (O and ~R)
5.) (~S v O) and (~S v ~R)
6.) ~S v ~R (Simplification)
7.) ~~R Double Negation R=~~R
8.) If ~~R then ~S
9.) If R then ~S = conclusion of the above argument.(less)

About Goodreads Q&A

Ask and answer questions about books!

You can pose questions to the Goodreads community with Reader Q&A, or ask your favorite author a question with Ask the Author.

See Featured Authors Answering Questions

Learn more