Scott Aaronson's Blog, page 58
April 2, 2013
Two P vs. NP updates (neither of them technical)

“Meme” courtesy of my brother David
First news item: it’s come to my attention that yesterday, an MIT professor abused his power over students for a cruel April Fools’ Day prank involving the P vs. NP problem. His email to the students is below.
I assume most of you already heard the news that a Caltech grad student, April Felsen, announced a 400-page proof of P≠NP last week. While I haven’t yet completely digested the argument, it’s already clear that Felsen (who I actually knew back when she was an MIT undergrad) has changed theoretical computer science forever, bringing in new tools from K-theory to higher topos theory to solve the biggest problem there was.
Alas, Felsen’s proof has the “short-term” effect of making the existing 6.045 seem badly outdated. So, after long reflection, I’ve made a decision that not all of you are going to like, but that I believe is the right one intellectually. I’ve decided to reorient the entire course to focus on Felsen’s result, starting with tomorrow’s lecture.
And further, I decided to rewrite Thursday’s midterm to focus almost entirely on this new material. That means that, yes, you’re going to have THREE DAYS to learn at least the basics of algebraic topology and operator algebras, as used in Felsen’s proof. To do that, you might need to drop everything else (including sleep, unfortunately), and this might prove to be the most strenuous and intense thing you’ve ever done. But it will also be an experience that will enrich your minds and ennoble your souls, and that you’ll be proud to tell your grandchildren about. And of course we’ll be there to help out. So let’s get started!
All the best,
Scott
Second news item: many of you have probably heard that Lance Fortnow’s The Golden Ticket—the first popular book about the P vs. NP problem—is now out. (The title refers to Roald Dahl’s Charlie and the Chocolate Factory, which involved a few chocolate bars that had coveted golden tickets inside the wrappers, along with millions of chocolate bars that didn’t.) I read it last week, and I think it’s excellent: a book I’ll happily recommend to family and friends who want the gentlest introduction to complexity theory that exists.
Some context: for more than a decade, people have been telling me that I should write a popular book about P vs. NP, and I never did, and now Lance has. So I’m delighted to say that reading Lance’s book quickly cured me of any regrets I might have felt. For not only is The Golden Ticket a great book, but better yet, it’s not a book that I ever could’ve written.
Here’s why: every time I would have succumbed to the temptation to explain something too complicated for the world’s journalists, literary humanists, and pointy-haired bosses—something like relativization, or natural proofs, or arithmetization, or Shannon’s counting argument, or Ladner’s Theorem, or coNP, or the reasons to focus on polynomial time—every time, Lance somehow manages to resist the temptation, and to stick to cute stories, anecdotes, and practical applications. This is really, truly a popular book: as Lance points out himself, in 162 pages of discussing the P vs. NP question, he never even formally defines P and NP!
But it goes beyond that: in the world of The Golden Ticket, P vs. NP is important because, if P=NP, then people could design more effective cancer therapies, solve more crimes, and better predict which baseball games would be closely-matched and exciting (yes, really). P vs. NP is also important because it provides a unifying framework for understanding current technological trends, like massively-parallel computing, cloud computing, big data, and the Internet of things. Meanwhile, quantum computing might or might not be possible in principle, but either way, it’s probably not that relevant because it won’t be practical for a long time.
In short, Lance has written precisely the book about P vs. NP that the interested layperson or IT professional wants and needs, and precisely the book that I couldn’t have written. I would’ve lost patience by around page 20, and exclaimed:
“You want me to justify the P vs. NP problem by its relevance to baseball?? Why shouldn’t baseball have to justify itself by its relevance to P vs. NP? Pshaw! Begone from the house of study, you cretinous fools, and never return!”
My favorite aspect of The Golden Ticket was its carefully-researched treatment of the history of the P vs. NP problem in the 50s, 60s, and 70s, both in the West and in the Soviet Union (where it was called the “perebor” problem). Even complexity theorists will learn countless tidbits—like how Leonid Levin was “discovered” at age 15, and how the powerful Sergey Yablonsky stalled Soviet perebor research by claiming to have solved the problem when he’d done nothing of the kind. The historical chapter (Chapter 5) is alone worth the price of the book.
I have two quibbles. First, throughout the book, Lance refers to a hypothetical world where P=NP as the “Beautiful World.” I would’ve called that world the “Hideous World”! For it’s a world where technical creativity is mostly worthless, and where the mathematical universe is boring, flat, and incomprehensibly comprehensible. Here’s an analogy: suppose a video game turned out to have a bug that let you accumulate unlimited points just by holding down a certain button. Would anyone call that game the “Beautiful Game”?
My second disagreement concerns quantum computing. Overall, Lance gives an admirably-accurate summary, and I was happy to see him throw cold water on breathless predictions about QC and other quantum-information technologies finding practical applications in the near future. However, I think he goes beyond the truth when he writes:
[W]e do not know how to create a significant amount of entanglement in more than a handful of quantum bits. It might be some fundamental rule of nature that prevents significant entanglement for any reasonable length of time. Or it could just be a tricky engineering problem. We’ll have to let the physicists sort that out.
The thing is, physicists do know how to create entanglement among many thousands or even millions of qubits—for example, in condensed-matter systems like spin lattices, and in superconducting Josephson junctions. The problem is “merely” that they don’t know how to control the entanglement in the precise ways needed for quantum computing. But as with much quantum computing skepticism, the passage above doesn’t seem to grapple with just how hard it is to kill off scalable QC. How do you cook up a theory that can account for the massively-entangled states that have already been demonstrated, but that doesn’t give you all of BQP?
But let me not harp on these minor points, since The Golden Ticket has so many pleasant features. One of them is its corny humor: even in Lance’s fantasy world where a proof of P=NP has led to a cure for cancer, it still hasn’t led to a cure for the common cold. Another nice feature is the book’s refreshing matter-of-factness: Lance makes it clear that he believes that
(a) P≠NP,
(b) the conjecture is provable but won’t be proven in the near future, and
(c) if we ever meet an advanced extraterrestrial civilization, they’ll also have asked the P vs. NP question or something similar to it.
Of course we can’t currently prove any of the above statements, just like we can’t prove the nonexistence of Bigfoot. But Lance refuses to patronize his readers by pretending to harbor doubts that he quite reasonably doesn’t.
In summary, if you’re the sort of person who stops me in elevators to say that you like my blog even though you never actually understand anything in it, then stop reading Shtetl-Optimized right now and go read Lance’s book. You’ll understand it and you’ll enjoy it.
And now it’s off to class, to apologize for my April Fools prank and to teach the Cook-Levin Theorem.
March 25, 2013
Sen. Tom Coburn, the National Science Foundation, and Antarctican Jello Wrestling
As some of you probably heard, last week Sen. Tom Coburn (R-Oklahoma) managed to get an amendment passed prohibiting the US National Science Foundation from funding any research in political science, unless the research can be “certified” as “promoting national security or the economic interests of the United States.” This sort of political interference with the peer-review process, of course, sets a chilling precedent for all academic research, regardless of discipline. (What’s next, an amendment banning computer science research, unless it has applications to scheduling baseball games or slicing apple pies?) But on researching further, I discovered that Sen. Coburn has long had it in for the NSF, and even has a whole webpage listing his grievances against the agency. Most of it is the usual “can you believe they wasted money to study something so silly or obvious?,” but by far my favorite tidbit is the following:
Inappropriate staff behavior including porn surfing and Jello wrestling and skinny-dipping at NSF-operated facilities in Antarctica.
It occurred to me that the NSF really has no need to explain this one, since a complete explanation is contained in a single word of the charge itself: Antarctica. Personally, I’d support launching an investigation of NSF’s Antarctica facilities, were it discovered that the people stuck in them weren’t porn surfing and Jello wrestling and skinny-dipping.
March 21, 2013
Quantum Computing Since Democritus: The Buzz Intensifies
Update (March 22): The Kindle edition of Quantum Computing Since Democritus is now available, for the low price of $15.40! (Not factorial.) Click here to get it from amazon.com, or here to get it from amazon.co.uk. And let me know how it looks (I haven’t seen it yet). Another Update: Just saw the Kindle edition, and the figures and formulas came out great! It’s a product I stand behind with pride.
In the meantime, I regret to say that the marketing for this book is getting crasser and more exploitative by the day.
It seems like wherever I go these days, all anyone wants to talk about is Quantum Computing Since Democritus—the sprawling new book by Scott Aaronson, published by Cambridge University Press and available for order now. Among leading figures in quantum information science—many of them well-known to Shtetl-Optimized readers—the book is garnering the sort of hyperbolic praise that would make Shakespeare or Tolstoy blush:
“I laughed, I cried, I fell off my chair – and that was just reading the chapter on Computational Complexity. Aaronson is a tornado of intellectual activity: he rips our brains from their intellectual foundations; twists them through a tour of physics, mathematics, computer science, and philosophy; stuffs them full of facts and theorems; tickles them until they cry ‘Uncle’; and then drops them, quivering, back into our skulls. Aaronson raises deep questions of how the physical universe is put together and why it is put together the way it is. While we read his lucid explanations we can believe – at least while we hold the book in our hands – that we understand the answers, too.” –Seth Lloyd
“Scott Aaronson has written a beautiful and highly original synthesis of what we know about some of the most fundamental questions in science: What is information? What does it mean to compute? What is the nature of mind and of free will?” –Michael Nielsen
“Not since Richard Feynman’s Lectures on Physics has there been a set of lecture notes as brilliant and as entertaining. Aaronson leads the reader on a wild romp through the most important intellectual achievements in computing and physics, weaving these seemingly disparate fields into a captivating narrative for our modern age of information. Aaronson wildly runs through the fields of physics and computers, showing us how they are connected, how to understand our computational universe, and what questions exist on the borders of these fields that we still don’t understand. This book is a poem disguised as a set of lecture notes. The lectures are on computing and physics, complexity theory and mathematical logic and quantum physics. The poem is made up of proofs, jokes, stories, and revelations, synthesizing the two towering fields of computer science and physics into a coherent tapestry of sheer intellectual awesomeness.” –Dave Bacon
After months of overhearing people saying things like the above—in the halls of MIT, the checkout line at Trader Joe’s, the bathroom, anywhere—I finally had to ask in annoyance: “is all this buzz justified? I mean, I’m sure the book is as deep, hilarious, and worldview-changing as everyone says it is. But, after all, it’s based off lecture notes that have long been available for free on the web. And Aaronson, being the magnanimous, open-access-loving saint that he is, has no plans to remove the online notes, even though he could really use the royalties from book sales to feed his growing family. Nor does Cambridge University Press object to his principled decision.”
“No, you don’t understand,” they told me. “Word on the street has it that the book is extensively updated for 2013—that it’s packed with new discussions of things like algebrization, lattice-based cryptography, the QIP=PSPACE theorem, the ‘quantum time travel controversy,’ BosonSampling, black-hole firewalls, and even the Australian models episode. They say it took years of painstaking work, by Aaronson and his student Alex Arkhipov, to get the notes into book form: fixing mistakes, clarifying difficult points, smoothing out rough edges, all while leaving intact the original’s inimitable humor. I even heard Aaronson reveals he’s changed his mind about certain things since 2006. How could you not want such a labor of love on your bookshelf?”
Exasperated, I finally exclaimed: “But the book isn’t even out yet in North America! Amazon.com says it won’t ship until April 30.”
“Sure,” one gas-station attendant replied to me, “but the secret is, it’s available now from Amazon.co.uk. Personally, I couldn’t wait a month, so I ordered it shipped to me from across the pond. But if you’re a less hardcore quantum complexity theory fan, and you live in North America, you can also preorder the book from Amazon.com, and they’ll send it to you when it arrives.”
Much as the hype still grated, I had to admit that I’d run out of counterarguments, so I looked into ordering a copy for myself.
March 18, 2013
John Preskill: My Lodestar of Awesomeness
I got back a couple days ago from John Preskill‘s 60th birthday symposium at Caltech. To the general public, Preskill is probably best known for winning two bets against Stephen Hawking. To readers of Shtetl-Optimized, he might be known for his leadership in quantum information science, his pioneering work in quantum error-correction, his beautiful lecture notes, or even his occasional comments here (though these days he has his own group blog and Twitter feed to keep him busy). I know John as a friend, colleague, and mentor who’s done more for me than I can say.
The symposium was a blast—a chance to hear phenomenal talks, enjoy the California sun, and catch up with old friends like Dave Bacon (who stepped down as Pontiff before stepping down as Pontiff was cool). The only bad part was that I inadvertently insulted John in my talk, by calling him my “lodestar of sanity.” What I meant was that, for 13 years, I’ve known plenty of physicists who can be arbitrarily off-base when they talk about computer science and vice versa, but I’ve only ever known John to be on-base about either. If you asked him a question involving, say, both Barrington’s Theorem and Majorana fermions, he’s one of the few people on earth who would know both, seem totally unfazed by your juxtaposing them, and probably have an answer that he’d carefully tailor to your level of knowledge and interest. In a polyglot field like quantum information, that alone makes him invaluable. But along with his penetrating insight comes enviable judgment and felicity of expression: unlike some of us (me), John always manages to tell the truth without offending his listeners. If I were somehow entrusted with choosing a President of the United States, he’d be one of my first choices, certainly ahead of myself.
Anyway, it turned out that John didn’t like my use of the word “sane” to summarize the above: for him (understandably, in retrospect), it had connotations of being humorless and boring, two qualities I’ve never seen in him. (Also, as I pointed out later, the amount of time John has spent helping me and patiently explaining stuff to me does weigh heavily against his sanity.) So I hereby rename John my Lodestar of Awesomeness.
In case anyone cares, my talk was entitled “Hidden Variables as Fruitful Dead Ends”; the PowerPoint slides are here. I spoke about a new preprint by Adam Bouland, Lynn Chua, George Lowther, and myself, on possibility and impossibility results for “ψ-epistemic theories” (a class of hidden-variable theories that was also the subject of the recent PBR Theorem, discussed previously on this blog). My talk also included material from my old paper Quantum Computing and Hidden Variables.
The complete program is here. A few highlights (feel free to mention others in the comments):
Patrick Hayden spoke about a beautiful result of himself and Alex May, on “where and when a qubit can be.” After the talk, I commented that it’s lucky for the sake of Hayden and May’s induction proof that 3 happens to be the next integer after 2. If you get that joke, then I think you’ll understand their result and vice versa.
Lenny Susskind—whose bestselling The Theoretical Minimum is on my to-read list—spoke about his views on the AMPS firewall argument. As you know if you’ve been reading physics blogs, the firewall argument has been burning up (har, har) the world of quantum gravity for months, putting up for grabs aspects of black hole physics long considered settled (or not, depending on who you ask). Lenny gave a typically-masterful summary, which for the first time enabled me to understand the role played in the AMPS argument by “the Zone” (a region near the black hole but outside its event horizon, in which the Hawking radiation behaves a little differently than it does when it’s further away). I was particularly struck by Lenny’s comment that whether an observer falling into a black hole encounters a firewall might be “physics’ Axiom of Choice”: that is, we can only follow the logical consequences of theories we formulate outside black-hole event horizons, and maybe those theories simply don’t decide the firewall question one way or the other. (Then again, maybe they do.) Lenny also briefly mentioned a striking recent paper by Harlow and Hayden, which argues that the true resolution of the AMPS paradox might involve … wait for it … computational complexity, and specifically, the difficulty of solving QSZK (Quantum Statistical Zero Knowledge) problems in BQP. And what’s a main piece evidence that QSZK⊄BQP? Why, the collision lower bound, which I proved 12 years ago while a summer student at Caltech and an awestruck attendee of Preskill’s weekly group meetings. Good thing no one told me back then that black holes were involved.
Charlie Bennett talked about things that I’ve never had the courage to give a talk about, like the Doomsday Argument and the Fermi Paradox. But his disarming, avuncular manner made it all seem less crazy than it was.
Paul Ginsparg, founder of the arXiv, presented the results of a stylometric analysis of John Preskill’s and Alexei Kitaev’s research papers. The main results were as follows: (1) John and Alexei are easily distinguishable from each other, due in part to the more latter’s “Russian” use of function words (“the,” “which,” “that,” etc.). (2) Alexei, despite having lived in the US for more than a decade, is if anything becoming more “Russian” in his function word use over time. (3) Even more interestingly, John is also becoming more “Russian” in his function word use—a possible result of his long interaction with Alexei. (4) A joint paper by Kitaev and Preskill was indeed written by both of them. (Update: While detained at the airport, Paul decided to post an online video of his talk.)
Speaking of which, the great Alexei Kitaev himself—the $3 million man—spoke about Berry curvature for many-body systems, but unfortunately I had to fly back early (y’know, 2-month-old baby) and missed his talk. Maybe someone else can provide a summary.
Happy 60th birthday, John!
Two unrelated announcements.
1. Everyone who reads this blog should buy Sean Carroll’s two recent books: From Eternity to Here (about the arrow of time) and The Particle at the End of the Universe (about the Higgs boson and quantum field theory more generally). They’re two of the best popular physics books I’ve ever read—in their honesty, humor, clarity, and total lack of pretense, they exemplify what every book in this genre should be but very few are. If you need even more inducement, go watch Sean hit it out of the park on the Colbert Report (and then do it again). I can’t watch those videos without seething with jealousy: given how many “OK”s and “y’know”s lard my every spoken utterance, I’ll probably never get invited to hawk a book on Colbert. Which is a shame, because as it happens, my Quantum Computing Since Democritus book will finally be released in the US by Cambridge University Press on April 30th! (It’s already available in the UK, but apparently needs to be shipped to the US by boat.) And it’s loaded with new material, not contained in the online lecture notes. And you can preorder it now. And my hawking of Sean’s books is in no way whatsoever related to any hope that Sean might return the favor with my book.
2. Recent Turing Award winner Silvio Micali asks me to advertise the Second Cambridge Area Economics and Computation Day (CAEC’13), which will be held on Friday April 26 at MIT. Anything for you, Silvio! (At least for the next week or two.)
March 13, 2013
Silvio and Shafi win Turing Award
Today I break long radio silence to deliver some phenomenal news. Two of the people who I eat lunch with every week—my MIT CSAIL colleagues Silvio Micali and Shafi Goldwasser—have won a well-deserved Turing Award, for their fundamental contributions to cryptography from the 1980s till today. (I see that Lance just now beat me to a blog post about this. Dammit, Lance!)
I won’t have to tell many readers of this blog that the names Goldwasser and Micali—or more often, the initials “G” and “M”—are as ubiquitous as Alice and Bob in modern cryptography, from the GGM construction of pseudorandom functions (discussed before on this blog), to the classic GMR paper that introduced the world to interactive proofs. Besides that, Shafi and Silvio are known as two of the more opinionated and colorful characters of theoretical computer science—and as I learned last week, Silvio is also an awesome party host, who has perfect taste in sushi (as well as furniture and many other things).
I wish I could go on right now talking about Shafi and Silvio—and even more, that I could join the celebration that will happen at MIT this afternoon. But I’m about to board a flight to LAX, to attend the 60th birthday symposium of longtime friend, extraordinary physicist, and sometime Shtetl-Optimized commenter John Preskill. (I’ll also be bringing you coverage of that symposium, including slides from my talk there on hidden variables.) So, leave your congratulations, etc. in the comments section, and I’ll see them when I land!
February 4, 2013
Collaborative Refutation
At least eight people—journalists, colleagues, blog readers—have now asked my opinion of a recent paper by Ross Anderson and Robert Brady, entitled “Why quantum computing is hard and quantum cryptography is not provably secure.” Where to begin?
Based on a “soliton” model—which seems to be almost a local-hidden-variable model, though not quite—the paper advances the prediction that quantum computation will never be possible with more than 3 or 4 qubits. (Where “3 or 4″ are not just convenient small numbers, but actually arise from the geometry of spacetime.) I wonder: before uploading their paper, did the authors check whether their prediction was, y’know, already falsified? How do they reconcile their proposal with (for example) the 8-qubit entanglement observed by Haffner et al. with trapped ions—not to mention the famous experiments with superconducting Josephson junctions, buckyballs, and so forth that have demonstrated the reality of entanglement among many thousands of particles (albeit not yet in a “controllable” form)?
The paper also predicts that, even with 3 qubits, general entanglement will only be possible if the qubits are not collinear; with 4 qubits, general entanglement will only be possible if the qubits are not coplanar. Are the authors aware that, in ion-trap experiments (like those of David Wineland that recently won the Nobel Prize), the qubits generally are arranged in a line? See for example this paper, whose abstract reads in part: “Here we experimentally demonstrate quantum error correction using three beryllium atomic-ion qubits confined to a linear, multi-zone trap.”
Finally, the paper argues that, because entanglement might not be a real phenomenon, the security of quantum key distribution remains an open question. Again: are the authors aware that the most practical QKD schemes, like BB84, never use entanglement at all? And that therefore, even if the paper’s quasi-local-hidden-variable model were viable (which it’s not), it still wouldn’t justify the claim in the title that “…quantum cryptography is not provably secure”?
Yeah, this paper is pretty uninformed even by the usual standards of attempted quantum-mechanics-overthrowings. Let me now offer three more general thoughts.
First thought: it’s ironic that I’m increasingly seeing eye-to-eye with Lubos Motl—who once called me “the most corrupt piece of moral trash”—in his rantings against the world’s “anti-quantum-mechanical crackpots.” Let me put it this way: David Deutsch, Chris Fuchs, Sheldon Goldstein, and Roger Penrose hold views about quantum mechanics that are diametrically opposed to one another’s. Yet each of these very different physicists has earned my admiration, because each, in his own way, is trying to listen to whatever quantum mechanics is saying about how the world works. However, there are also people all of whose “thoughts” about quantum mechanics are motivated by the urge to plug their ears and shut out whatever quantum mechanics is saying—to show how whatever naïve ideas they had before learning QM might still be right, and how all the experiments of the last century that seem to indicate otherwise might still be wiggled around. Like monarchists or segregationists, these people have been consistently on the losing side of history for generations—so it’s surprising, to someone like me, that they continue to show up totally unfazed and itching for battle, like the knight from Monty Python and the Holy Grail with his arms and legs hacked off. (“Bell’s Theorem? Just a flesh wound!”)
Like any physical theory, of course quantum mechanics might someday be superseded by an even deeper theory. If and when that happens, it will rank alongside Newton’s apple, Einstein’s elevator, and the discovery of QM itself among the great turning points in the history of physics. But it’s crucial to understand that that’s not what we’re discussing here. Here we’re discussing the possibility that quantum mechanics is wrong, not for some deep reason, but for a trivial reason that was somehow overlooked since the 1920s—that there’s some simple classical model that would make everyone exclaim, “oh! well, I guess that whole framework of exponentially-large Hilbert space was completely superfluous, then. why did anyone ever imagine it was needed?” And the probability of that is comparable to the probability that the Moon is made of Gruyère. If you’re a Bayesian with a sane prior, stuff like this shouldn’t even register.
Second thought: this paper illustrates, better than any other I’ve seen, how despite appearances, the “quantum computing will clearly be practical in a few years!” camp and the “quantum computing is clearly impossible!” camp aren’t actually opposed to each other. Instead, they’re simply two sides of the same coin. Anderson and Brady start from the “puzzling” fact that, despite what they call “the investment of tremendous funding resources worldwide” over the last decade, quantum computing still hasn’t progressed beyond a few qubits, and propose to overthrow quantum mechanics as a way to resolve the puzzle. To me, this is like arguing in 1835 that, since Charles Babbage still hasn’t succeeded in building a scalable classical computer, we need to rewrite the laws of physics in order to explain why classical computing is impossible. I.e., it’s a form of argument that only makes sense if you’ve adopted what one might call the “Hype Axiom”: the axiom that any technology that’s possible sometime in the future, must in fact be possible within the next few years.
Third thought: it’s worth noting that, if (for example) you found Michel Dyakonov’s arguments against QC (discussed on this blog a month ago) persuasive, then you shouldn’t find Anderson’s and Brady’s persuasive, and vice versa. Dyakonov agrees that scalable QC will never work, but he ridicules the idea that we’d need to modify quantum mechanics itself to explain why. Anderson and Brady, by contrast, are so eager to modify QM that they don’t mind contradicting a mountain of existing experiments. Indeed, the question occurs to me of whether there’s any pair of quantum computing skeptics whose arguments for why QC can’t work are compatible with one another’s. (Maybe Alicki and Dyakonov?)
But enough of this. The truth is that, at this point in my life, I find it infinitely more interesting to watch my two-week-old daughter Lily, as she discovers the wonderful world of shapes, colors, sounds, and smells, than to watch Anderson and Brady, as they fail to discover the wonderful world of many-particle quantum mechanics. So I’m issuing an appeal to the quantum computing and information community. Please, in the comments section of this post, explain what you thought of the Anderson-Brady paper. Don’t leave me alone to respond to this stuff; I don’t have the time or the energy. If you get quantum probability, then stand up and be measured!
January 29, 2013
TCS+ online seminars
Good news, everyone! Anindya De, Oded Regev, and my postdoc Thomas Vidick are launching an online theoretical computer science seminar series called TCS+, modeled after the successful Q+ quantum information seminars run by Daniel Burgarth and Matt Leifer. The inaugural TCS+ lecture will be on Wednesday Feb. 6, at noon Eastern Standard Time. Ronald de Wolf, longtime friend both of this blog and of its author, will be speaking on Exponential Lower Bounds for Polytopes in Combinatorial Optimization, his STOC’2012 Best Paper with Samuel Fiorini, Serge Massar, Sebastian Pokutta and Hans Raj Tiwary. This is the paper that used ideas originally from quantum communication complexity to solve a 20-year-old problem in classical optimization: namely, to rule out the possibility of proving P=NP by reducing the Traveling Salesman Problem to certain kinds of linear programs. Ronald previously gave the talk at MIT, and it rocked. See Thomas’s blog for details about how to watch.
January 24, 2013
“Quantum Information and the Brain”
A month and a half ago, I gave a 45-minute lecture / attempted standup act with the intentionally-nutty title above, for my invited talk at the wonderful NIPS (Neural Information Processing Systems) conference at Lake Tahoe. Video of the talk is now available at VideoLectures net. That site also did a short written interview with me, where they asked about the “message” of my talk (which is unfortunately hard to summarize, though I tried!), as well as the Aaron Swartz case and various other things. If you just want the PowerPoint slides from my talk, you can get those here.
Now, I could’ve just given my usual talk on quantum computing and complexity. But besides increasing boredom with that talk, one reason for my unusual topic was that, when I sent in the abstract, I was under the mistaken impression that NIPS was at least half a “neuroscience” conference. So, I felt a responsibility to address how quantum information science might intersect the study of the brain, even if the intersection ultimately turned out to be the empty set! (As I say in the talk, the fact that people have speculated about connections between the two, and have sometimes been wrong but for interesting reasons, could easily give me 45 minutes’ worth of material.)
Anyway, it turned out that, while NIPS was founded by people interested in modeling the brain, these days it’s more of a straight machine learning conference. Still, I hope the audience there at least found my talk an amusing appetizer to their hearty meal of kernels, sparsity, and Bayesian nonparametric regression. I certainly learned a lot from them; while this was my first machine learning conference, I’ll try to make sure it isn’t my last.
(Incidentally, the full set of NIPS videos is here; it includes great talks by Terry Sejnowski, Stanislas Dehaene, Geoffrey Hinton, and many others. It was a weird honor to be in such distinguished company — I wouldn’t have invited myself!)
January 20, 2013
Lily Rebecca Aaronson
In 7+ years of blogging, one lesson I’ve learned is to go easy on the highly-personal stuff. But sometimes one does need to make an exception. Lily Rebecca Aaronson was born today (Jan. 20), at 6:55am, to me and Dana, weighing 3.3kg. (After seeing her placenta, the blog category “Adventures in Meatspace” never seemed more appropriate.) I’m blogging from the postpartum ward, which has free wifi and excellent food—we’ll probably stay here as long as they’ll let us.
Given that her parents are both complexity theorists, one question people will have is whether Lily demonstrates any early aptitude in that field. All I can say is that, so far, she’s never once confused quantum computing with classical exponential parallelism, treated relativization as acting on a complexity class rather than on its definition, or made any other mathematical mistake that I can see. (She has, on the other hand, repeatedly mistaken her hand for food.)
Scott Aaronson's Blog
- Scott Aaronson's profile
- 126 followers
