Che cos'è un numero immaginario? Due rette parallele arriveranno mai a incontrarsi? La matematica può aiutarci a prevedere il futuro? Nel corso del tempo i matematici si sono posti grandi domande, offrendo talvolta risposte utili per comprendere meglio i campi più svariati della nostra esistenza, dai pattern presenti in natura alla tecnologia informatica. Scritto in modo semplice e diretto, "Il libro della matematica" include teorie, citazioni memorabili, aneddoti, immagini che gettano nuova luce sull'idea che abbiamo del mondo dei numeri. Che tu sia uno studente avido di conoscenza o un semplice curioso, troverai fra queste pagine moltissimi spunti di riflessione.
Dorling Kindersley (DK) is a British multinational publishing company specializing in illustrated reference books for adults and children in 62 languages. It is part of Penguin Random House, a consumer publishing company jointly owned by Bertelsmann SE & Co. KGaA and Pearson PLC. Bertelsmann owns 53% of the company and Pearson owns 47%.
Established in 1974, DK publishes a range of titles in genres including travel (including Eyewitness Travel Guides), arts and crafts, business, history, cooking, gaming, gardening, health and fitness, natural history, parenting, science and reference. They also publish books for children, toddlers and babies, covering such topics as history, the human body, animals and activities, as well as licensed properties such as LEGO, Disney and DeLiSo, licensor of the toy Sophie la Girafe. DK has offices in New York, London, Munich, New Delhi, Toronto and Melbourne.
This reader-friendly introduction to the world of Mathematics is a joy to peruse. D K Publishing has provided a colourful, informative product which is quite extensive in its range: from its beginnings (Ancient and Classical Periods, 6000 BCE–500 CE); the Middle Ages (500–1500); the Renaissance 1500–1680); the Enlightenment (1680–1800); the 19th Century (1800–1900); and Modern Mathematics (1900–Present).
By presenting this history chronologically one can read this work from Go to Whoa, much like a novel. Each of the subjects are discussed and written for the benefit of non-mathematicians, with plenty of diagrams, charts, informative boxed inserts, quotations, and mini biographies of relevant personalities. At the same time, because a specific maths subject does not necessarily limit itself to a specific time-table, each section shows before-and-after boxes, as well as cross references to other sections relating to the subject in question — so the reader interested in any one particular concept in maths can follow previous historical lead-ups and further future developments at one’s leisure.
It is an unfortunate fact of modern life that many people, for whatever reason, find maths “abhorrent” — unusual at a time when so much of modern living is dominated by maths in just about every form, and universally. This book goes a long way to help familiarise ordinary people with what the issues are in each of the various branches of maths. This does not mean that one will fully comprehend the deeper recesses of these worlds, but it does make the “monster” less frightening and more accessible — and maybe kindle some enthusiasm in exploring specific ideas which might prove to be more appealing than one originally thought…
Alfa Yayınlarının DK serisini beğeniyorum. Daha önce Ekonomi kitabını kardeşim okumuştu, ben de göz gezdirmiştim. Alanında gerçekten uzman ve çoğu eğitmen de olan onlarca yazarın bir araya gelmesiyle oluşturulan "katkı verenlerin" ortaya çıkardığı bu başvuru kaynakları ele alınan konuyu tarihi gelişimiyle, alana katkı yapmış önemli isimleri tanıtarak, anlaşılır bir dille aktarıyor ve anlatılanları günlük hayata bağlayarak önemli bir eksiği kapatıyor.
Matematik kitabını beğendim. Çeviri gayet iyi. Anlamadığım epeyce yer olduğunu itiraf etmem lazım fakat bu benim eksikliğim. Anlatılanların günümüz teknolojisine, tarihi olaylara ya da kişilere bağlanmasını çok sevdim. Tek eleştirim şu; metnin düzeltilmeye ihtiyacı var. Bazı yerlerde İngilizce başlıklar, kısaltmalar çevrilmeden kalmış. Kimi paragraflar tekrar etmiş metinde. Ard arda aynı paragrafı okuyunca şaşırdım bazen.
İl halk kütüphanesinden ödünç almıştım kitabı. Her kütüphaneye kazandırılmalı bu seri.
Simple history of some of the most important theorems in mathematics. It fit the bill for what I feel has been missing in most of my math education so far, which is the motivation for actually developing these theories. I would recommend this to anyone interested in math as a modern infographic-esque approach to math history that doesn't get bogged down in details.
Despite getting degrees in engineering and analytics, I realized how much I still dont know in this subject of math. And that in itself is both saddening and exciting.
Math was always one of those things that I was supposed to be good at (ha ha, Asian) but failed to excel in due to my brain working way too fast to ever get used to the intricacies of proofs and equations. Despite this, I've always thought the theory behind different branches of math was something I ought to have gotten into a long time ago, so I picked up this encyclopedia in the hopes that it would steer me on the right track, especially since I have a required math class next semester. Unfortunately, while I did legitimately enjoy it, this book is also a rather unusual example of the statement that theory needs to go along with praxis. We're not talking about political action here this time; this encyclopedia describes a lot of aspects of math enough for me to maintain my interest in it, but it made me realize that there are a lot of details of math that are just impossible to understand without examples (yes, I know this was stupidly obvious for me not to have realized) and this book is unfortunately low on giving them. Of course, the Big Ideas Simply Explained formula doesn't neatly fit in with academic texts, but in that sense reading this entry without them as companions seems to be fairly pointless. There are a lot of neat facts here that I enjoyed reading about, but I unfortunately didn't receive the help I thought I would got from The Maths Book.
A very good survey of the prominent figures in the history of mathematics and it's related branches.
The only issue I had, and it was strictly my fault, was my approach to reading this book. until about a quarter of the way through. I approached this as something I could learn some of the mechanics of math, where it is a book of a historical timeline of the subject, and the major figures involved. After realizing this, and resetting of my expectations, I was able to enjoy the brief histories of the persons of math.
Ich habe mir den Spaß erlaubt, zwei monumentale Werke der Mathematikgeschichte – „The Maths Book“ und „6000 Jahre Mathematik“ von Hans Wußing (1927–2011)– miteinander zu vergleichen. Mein Ziel war es, nicht nur ihre Inhalte zu betrachten, sondern die tieferliegenden philosophischen Grundannahmen zu beleuchten, die ihre unterschiedlichen didaktischen Ansätze prägen. Während das eine Werk durch klare, visuell gestützte Darstellungen eine heroische, entdeckungsbasierte Erzählung bietet, entfaltet das andere eine dicht gewebte, historisch-philosophische Analyse. Die Frage, die diesem Vergleich zugrunde liegt, lautet daher: Wie spiegeln Form und Stil der Darstellung die jeweilige Auffassung davon wider, was die Geschichte der Mathematik eigentlich ist? Die Analyse der beiden Werke zeigt, dass ihre unterschiedlichen didaktischen Ansätze eng mit ihren jeweiligen philosophischen Weltanschauungen verknüpft sind. „The Maths Book“ erfüllt seine didaktische Aufgabe der Vereinfachung auf brillante Weise, indem es eine heroische, entdeckungsbasierte Erzählung der Mathematik präsentiert. Diese Zugänglichkeit erkauft es jedoch durch den Verzicht auf historische und philosophische Nuancen. Im Gegensatz dazu bietet „6000 Jahre Mathematik“ eine tiefgründige, wissenschaftlich und philosophisch reichhaltige Darstellung der Mathematik als kulturelles Produkt. Seine akademische Strenge und dichte Prosa/Darstellung schränken jedoch das Publikum ein. Die didaktische Form jedes Buches ist kein neutraler Behälter für historische Fakten. Die infografikgestützte, lineare Struktur von „The Maths Book“ dient als natürliches Vehikel für eine platonische Sicht auf die Mathematik. Die dichte, textzentrierte und vielschichtige Struktur von Wußings Werk ist notwendig, um eine historistische Philosophie der Mathematik zu vermitteln. Die Art, wie die Geschichte erzählt wird, ist zugleich eine Aussage darüber, was diese Geschichte bedeutet. Beide Ansätze haben ihren eigenen, unverzichtbaren Wert. Das Modell von „The Maths Book“ eignet sich hervorragend, um Interesse zu wecken und Wissen zu demokratisieren, und bietet einem breiten Publikum einen leicht zugänglichen Einstieg. „6000 Jahre Mathematik“ von Wußing ist für die ernsthafte wissenschaftliche Auseinandersetzung unerlässlich: Es liefert die Tiefe, den Kontext und die philosophische Strenge, die erforderlich sind, um Mathematik nicht nur als Sammlung von Resultaten, sondern als eine der komplexesten intellektuellen Reisen der Menschheit zu verstehen. Die beiden Werke erzählen die Geschichte der Mathematik nicht nur unterschiedlich; sie verkörpern zwei oft unübersetzbare Philosophien darüber, was diese Geschichte eigentlich ist. Besonders hervorzuheben ist, dass Wußing in seinem kulturgeschichtlichen Ansatz Afrika eine bislang seltene, nun aber zentrale Rolle zuschreibt. Während „The Maths Book“ sich auf die bekannten Hochkulturen konzentriert und Artefakte wie den Rhind-Papyrus hervorhebt, öffnet „6000 Jahre Mathematik“ den Blick für die Ursprünge mathematischen Denkens jenseits dieser klassischen Zentren. In einem eigenen Kapitel zur Ethnomathematik widmet Wußing Afrika explizit Aufmerksamkeit und behandelt etwa die Sona-Geometrie sowie den Ishango-Knochen – ein rund 20.000 Jahre altes Artefakt aus dem heutigen Kongo, das als eines der frühesten Zeugnisse mathematischer Abstraktion gilt. Indem Wußing diesen prähistorischen Zählstab in seine Erzählung integriert, verlagert er den Ursprung der Mathematik symbolisch in das Herz Afrikas und versteht sie als universales, zutiefst menschliches Streben, das weit über die Grenzen der bekannten Hochkulturen hinausreicht. So wird 6000 Jahre Mathematik nicht nur zu einem Werk über Zahlen, sondern zu einem Buch über die kulturelle Vielfalt und Tiefe des mathematischen Denkens selbst. Ein weiterer Aspekt, der „6000 Jahre Mathematik“ besonders hervorhebt, ist die bemerkenswerte Bildauswahl. Wußing nutzt Abbildungen nicht bloß als Illustrationen, sondern als integralen Bestandteil seiner kulturgeschichtlichen Erzählung. Viele der Bilder, die er versammelt, waren mir zuvor unbekannt. Man merkt sofort, dass sie nicht chronologisch, sondern nach inhaltlicher Systematik angeordnet sind – oft in thematisch oder biografisch aufeinander bezogenen Paaren oder Gruppen, die gedankliche Linien sichtbar machen, wo reine Chronologie sie verdeckt hätte. So begegnen sich auf den Seiten d’Alembert und Euler, Lebesgue und Borel, Riesz und von Neumann, Minkowski und Einstein, Hardy und Ramanujan, Cartan und Lie, Ito und Born oder Russell und Whitehead – Korrespondenzen von Geist zu Geist, über Generationen hinweg. Diese Gegenüberstellungen erzeugen eine stille, aber eindrucksvolle visuelle Erzählung: Mathematik als ein Netz von Ideen, Beziehungen und geistigen Resonanzen. Auch die Auswahl der Motive reicht weit über das Erwartbare hinaus. Der Grabstein Jakob Bernoullis im Basler Münster mit der „logarithmischen Spirale“ steht neben Eulers Grabmal auf dem Lazarus-Friedhof in St. Petersburg – beide Bilder zusammen bilden eine Art Meditation über Vergänglichkeit und geistige Unsterblichkeit. Ein Möbiusband, als Skulptur vor der Deutschen Bank in Frankfurt, erinnert daran, wie mathematische Ideen in die Alltagskultur eingedrungen sind. Das Denkmal Lobatschewskis, das zerstörte Geburtshaus von Gauß in Braunschweig oder das Abel-Denkmal in Oslo zeigen, wie unterschiedlich Nationen mit ihrem mathematischen Erbe umgehen. Wußing integriert auch überraschende kulturelle Querverbindungen: Porträts von Debussy und Ravel illustrieren die Nähe von Musik und Mathematik, während das Titelblatt von Ludwig Bieberbachs „Die völkische Verwurzelung der Wissenschaft (Typen mathematischen Schaffens)“ ein düsteres Kapitel deutscher Wissenschaftsgeschichte aufschlägt. Der „Cantor-Würfel“ in Halle, van der Waerden bei einem Vortrag 1979 in Heidelberg, die Doppelporträts von Markow und Kolmogorow oder Gödel und Tarski führen die Linie des mathematischen Denkens bis ins 20. Jahrhundert fort. Das Bourbaki-Panorama in Luzern verweist schließlich auf den ironischen, fast mythischen Selbstbezug moderner Mathematik. Besonders eindrucksvoll sind die fotografischen Zeugnisse der Orte des Gedenkens: das Rondell der Göttinger Nobelpreisträger, arrangiert im „Gaußschen 17-Eck“ auf dem Stadtfriedhof; Hilberts Grab mit dem berühmten Spruch „Wir müssen wissen. Wir werden wissen.“; und das Bild von Richard Courant als Frontsoldat 1915, das die menschliche Zerbrechlichkeit hinter mathematischer Größe sichtbar macht. Selbst das Mathematische Forschungsinstitut Oberwolfach – das ich im August dieses Jahres erstmals „besuchen“ konnte, wenn auch nur von außen, da man ohne Einladung nicht eingelassen wird – erhält durch Wußings Darstellung einen beinahe mythischen Glanz als moderner Tempel des mathematischen Geistes. All dies zeigt, dass Wußing die visuelle Dimension seines Werkes nicht als schmückendes Beiwerk begreift, sondern als Teil einer bewussten Systematik. Die Bilder sind Denkfiguren, Spiegel kultureller Tiefenschichten, Resonanzräume zwischen Leben und Werk. Seine Auswahl bezeugt ein enzyklopädisches Wissen, das von Sensibilität für Zusammenhänge getragen ist – und zugleich die Schönheit des mathematischen Denkens sichtbar macht, in Form, Gestalt und Gesicht. Schmerzlich habe ich in Wußings Werk ein Bild des Ishango-Knochens vermisst – und gerade in dieser Leerstelle spüre ich das Vermächtnis eines Forschenden, der die Mathematik als universales, zutiefst menschliches Denken begriff.
I taught high school maths for 40 years and wish this book had been around then. It is a fascinating overview of the complex and beautiful world of mathematics though by necessity it does not delve too deeply into its subject matter. And it is mercifully free of abstruse symbols making it a lot more accessible. Nevertheless I didn't understand a lot of it, having stopped my mathematical studies at university, but was still able to appreciate the amazing creativity and artistic intelligence required to create new mathematical ideas.
This is a good edition to the BISE series. I felt like that for the most part, the mathematical concepts did properly build upon each other in levels of complexity, leading to a more cohesive sense of progression that many of these science BISE sometimes lack.
I think this book picks up the slack that so much of math classes lack: the intrigue in understanding the origins of where these core concepts come from. For example, we take it for granted that negative numbers and zero are common concepts to grasp. But imagine what it means for those numbers to exist in real life. Mathematics after all, when not used for intellectual leisurely pursuits, is crucial for describing real life events and objects. This book explores the arduous journey of mathematicians reconciling with the reality of such strange concepts like negative numbers, fractions, zero, and especially (the not so) imaginary numbers.
My mathematical ability improved marginally from reading this book. I could appreciate (pre-)calculus, geometry, and number systems much more after reading this, knowing their significance, and could actually think more critically and creatively in mathematics.
As with most of these BISE books, I highly recommend reading this book in conjunction with another book or while taking a class in the subject. It can be exhausting reading a bunch of somewhat unrelated subfield back to back. As such, take plenty of breaks while reading these BISE books to reflect on the stories told in these 1-6 brief but condensed pages. Annotate or take plenty of notes, too, to reflect on these ideas; summarize the stories or lessons told.
The Maths Book is historical math, where you can learn math in history! The book talks about calculus, statistics, probability, algebra, and the people who created them!
In this book, each part is sorted into a content. The contents are: “Ancient and Classical Periods” (6000 BCE-500 CE), “The Middle Ages” (500-1500), “The Renaissance” (1500-1680), “The Enlightenment” (1680-1800), “The 19th Century” (1800-1900), and “Modern Mathematics” (1900-present)
In each chapter, there are “In Context” which includes, Key Figures, Field, Before, and After. The book also has illustrations, which is super handy, as one would understand much more with colourful images. And in almost every page there are quotes people have said. For example, in one of the pages, Pierre-Simon Laplace said “Probability theory is nothing but common sense reduced to calculation” Plus, usually, on the side of the page, there would be a paragraph about the person’s life. (And their key works)
What I really like about this book is that it’s very organised and have very clear wordings in it. My favourite part of the book was when it talked about cryptography and the deciphering process. It seemed intriguing to me (don’t ask, I really don’t know why).
I definitely recommend it. Very simple to understand. 10/10 stars. (I know there aren’t that many, just pretend)
The book covers a wide variety of topics and does a good job in following the history of mathematics. However it really is more of an encyclopedia than a book - each topic is 2-4 pages. They are not connected among themselves and many are boring to read following a simple pattern “person A studied in B and discovered C which is used in X,Y,Z practical applications”. The book manages to explain some topics in a nice way giving a taste of both the mathematical idea and the story behind it while completely failing for others. I am not sure what is the intended purpose of this book, in my opinion it is neither a good introduction to the world of mathematics nor an interesting excursion into its history. It did inspire me to an extent but only because I was already familiar with most of the ideas discussed.
Whilst I am sure I did not understand all of this book properly and will remember even less it was a brilliant and eye opening read.
Taking a chronological journey through the history of maths it covers the topics in enough detail to understand their importance and impact without getting too bogged down in detail. The focus is learning about maths, rather than learning how to do it.
It has definitely given me a new appreciation of the topics and for those who have increased our knowledge throughout history.
My only slight criticism is that there was not a forward looking chapter at the end to explore areas remaining to be discovered and areas of current focus. This is touched upon in recent developments but would have been a good addition.
The sub-title is "Big Ideas Simply Explained", and my claim is that most of math in the book isn't explained. It's more like casual exposure to math, presented in chronological order. I gave up on this book pretty quickly because it's not going to propel me towards mathematical maturity.
1/5 for people who want to get better at math
4/5 for people who might just want a cursory glance at various maths topics.
Not a lazy read for sure, hence taking me almost exactly a year to finish it. I loved the format – encyclopedia style, yet following chronological order and putting mathematical concepts and ideas in context. I especially liked notes on people themselves – whoever is in focus – some idea of what their life was about. Not sure how accessible it is for people fully outside of mathematics, but it's as simplified as it gets, giving you the main idea and references for further research.
Probably the best popular style history of maths book I’ve ever read. It’s very readable and covers a diverse range of mathematical disciplines through time, covering discoveries and biographies at the same time. It filled in some holes for me and has prompted me to read more some topics. I’d say the book has accomplished what is probably set out to achieve.
really good read....was able to go thru it quickly---easy to understand and made complex concepts very simple. Really worth a read on a rainy day if you want to learn about basic math concepts that are otherwise complex---gives good context for their development as well
I really love books from this series. It presents groundbreaking ideas from the mathematics, across the history. Allowed me to get some better intuition about some of the math concepts and get up to date with the biggest problems that researches are facing currently.
Would need, in order to be comprehensive, more material on the relationship between mathematics and music, methods of calculating pi, Erastothenes's calculation of Earth's size, and the Riemann hypothesis, among other things (I lost track of everything that needed more clarification). This is perhaps the most defective of the DK Big Ideas books, although not as boring as the History Book.
Took me quite some time to finish the book, but it was definitely worth it! Although there were many informations, some harder than other, the book was still interesting and I really liked the visual part / design!
The best account of the chronological history of maths and mathematicians that I've read. Readable, insightful and appears to have aimed for diversity.