What do you think?
Rate this book


294 pages, Hardcover
First published October 16, 2008
"Instead of breaking atoms apart to release energy (fission), the superbomb would stick them together ( fusion) and release even more.Robert Oppenheimer:
While this might seem to be a subtle difference, fusion, unlike fission, had the potential to produce weapons of truly unlimited power. A single Super would be able to wipe out even the largest city—a task far beyond even the bombs of Hiroshima and Nagasaki.
A fusion bomb would be the ultimate weapon.
It would also split the scientific community in two and would drive humanity to the brink of ruin..."
"Fusion gets its energy by making light elements roll down the hill toward iron. Fission gets its energy by making heavy elements roll down the hill toward iron. Iron, already at the bottom of the hill, can’t yield energy through fusion or fission. It is the dead ashes of a fusion furnace, utterly unable to yield more energy. When a star runs out of other fuels, its iron cannot burn in its fusion furnace. The fusion engine has nothing that it can turn into energy, so it shuts off and the star abruptly collapses. Depending on the star’s nature, it can die a fiery death: the final collapse ignites one last, violent burn of its remaining fuel, blowing up the star with unimaginable violence. A supernova, as such an explosion is called, is so energetic that a single one will typically outshine all the other stars in its galaxy combined. The star spews its guts into space, contaminating nearby hydrogen clouds in the process of collapsing into new stars. This is what happened before our sun was born; it got seeded with the nuclear ash of a supernova explosion. All the iron on Earth, all the oxygen, all the carbon— almost all the elements heavier than hydrogen and helium—are the remnants of a dead fusion furnace. We are all truly made of star stuff..."
"The community seems to be in thrall to a collective delusion. Since the early 1950s, physicists have convinced themselves that fusion energy is nearly within their grasp. The perennially overoptimistic Edward Teller thought that within a few years, hydrogen bombs would carve canals, propel spacecraft, and generate almost unlimited amounts of energy. Lyman pitzer thought powerful magnetic fields would create an artificial star within a decade. The ZETA team thought they had achieved fusion in 1958, freeing the planet from its dependence on fossil fuels. Laser fusion scientists thought that Shiva would produce energy, and that Nova would produce energy.
Wrong, wrong, wrong. The history of fusion energy remained a series of failures.
Even if scientists finally change their luck, even if NIF breaks even and ITER manages to get a plasma burning for minutes at a time, both machines are still far from becoming working fusion reactors. NIF’s design, particularly its slow lasers that need to cool for hours between shots, suggests that researchers will have to move to an entirely different type of laser system to have any hope of a practical energy source. ITER will never achieve ignition and sustained burn, the hallmark of a successful magnetic fusion reactor.
It is entirely possible that after billions of dollars and decades of research, fusion scientists will take the experimental results from ITER and turn them into a design for a viable fusion reactor. No physical law stands against it, after all. But if history is any guide, a long, long road lies ahead before physicists will be able to tame fusion reactions in a bottle..."