The exponential growth of data combined with the need to derive real-time business value is a critical issue today. An event-driven data mesh can power real-time operational and analytical workloads, all from a single set of data product streams. With practical real-world examples, this book shows you how to successfully design and build an event-driven data mesh. Building an Event-Driven Data Mesh
Important information for those working with real-time Data Mesh
I have read quite a number of books on data mesh and have experience with working with Data Mesh for a number of clients. This is a very good reference on key issues to think about when implementing an event based data mesh. My only criticism is that the author thinks that when mapping event based data to data at rest, one can switch from ELT to ETL. If you work with data analysts and scientist you would know that they always need to play around with and test the data in sandboxes before they move it into production. ETL doesn’t really facilitate this.
Just tries to sell that you only need Kafka (because is written by the guy's company which sells Kafka), and most of the paragraphs are shallow or started to be explained as this descentralized topic, which magically becomes centralised, while the point of data mesh (from his definition), is to empower teams to do whatever they want, like copying data multiple times. TL;DR: confusing explanations and diagrams, just sell Kafka, recommendations which clash with each other once it goes into detail
Este libro discute cómo crear un Data Mesh, el equivalente a la arquitectura de microservicios, pero para datos, usando una implementación específica: una arquitectura basada en eventos, especialmente con Kafka o algo muy parecido.
La idea principal es usar la técnica Change Data Capture para extraer datos conforme van sucediendo en las fuentes de datos originales, transformarlos en eventos significativos para la organización y publicarlos en el Event Broker central que también debe funcionar como base de datos para poder crear nuevos productos de datos desde él cuando se requiera.
El libro habla de todos los detalles de implementación que debes tener en cuenta, las técnicas, la organización del equipo, las etapas de la plataforma, el control de los datos, etc.
Me parece una muy buena guía para hacer esta implmentación específica de un data mesh, aunque está casi casi hablando sólo de Kafka, ya que el autor es un directivo de Confluence. Aún así, me pareció una propuesta muy interesante que estaré probando pronto.