Take the next steps toward mastering deep learning, the machine learning method thatâ??s transforming the world around us by the second. In this practical book, youâ??ll get up to speed on key ideas using Facebookâ??s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian Pointer shows you how to set up PyTorch on a cloud-based environment, then walks you through the creation of neural architectures that facilitate operations on images, sound, text, and more through deep dives into each element. He also covers the critical concepts of applying transfer learning to images, debugging models, and PyTorch in production.
It is a superficial book that does not cover any topic in sufficient detail. Chapters 2 and 4 are quite good because they are about pytorch. Chapters 3, 5, and 6, instead of talking about working with pytorch, bump into superficial stories about neural network models. I would be glad if chapters 7 and 8 were much more detailed. Chapter 9 is completely useless, it just mentions different methods and technologies from the world of neural networks, but does not explain anything.
Nach dem Buch "Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow: Konzepte, Tools und Techniken für intelligente Systeme. Aktuell zu TensorFlow 2" vom Schriftsteller Aurélien Géron wollte ich eine andere Bibliothek für Machine Learning lernen. Pytorch kommt man nicht vorbei, wenn es um das Thema geht - deswegen habe ich mich entscheiden dieses Buch zu lesen.
Im Nachhinein kann ich sagen, dass die Reihenfolge von Büchern meine Meinung nach richtig gewesen war. Beim ersten Buch konnte ich das theoretische Teil von Machine Learning sehen, während hier wird es mehr auf die Beispiele aus der Praxis eingegangen. Für jemand, wie ich, der hobbymäßig mit Python programmiert, wird es wahrscheinlicher einfacher die Logik von Tensorflow zu verstehen, da Pytorch etwas abstrakter ist. Nichtdestotrotz, wie man im Buch sehen kann, ist es möglich die Aufgaben mit beiden Bibliotheken genauso gut zu erledigen.
Gefehlt haben mir die vertieften Unterkapitel bei den Bildklassifizierungen und CNNs. Etwas unerwartet und sehr praktisch fand ich das Kapitel über Debuggen der Modelle, worüber man leider viel zu selten spricht. Insgesamt schafft man eine gute Übersicht davon, wie man ein Machine-Learning-Modell programmieren, debuggen und in die Produktion einsetzen kann.
It's a book for someone that already has some skills in deep learning. isn't a book for beginners. Anoter funny fact is that this book contains some code errors, but are not too dangerous, and if you're agile with coding, you'll notice fast. Despite of that, it helped me a lot moving from tensorflow to PyTorch. I'll recommend it if you want to do the same, isn't a book for learning deep learning, for that task i'd recommend "Learning Deep Learning - Magnus Ekman", "Machine Learning - Aurelien Geron", or Francois Choillet books. Regardless of that, this book makes you to build an AlexNet, it covers some history and gives you good tips for a general Deep Learning Development. Im applying an using this concepts right now with some of personal projects. Another fact, this book was released in 2019, so pytorch wasn't well developed yet, remember that pytorch released date was 2017, so, nowadays pytorch doesn't contains any of the limitations that the book have mentioned, take that in mind (aka, you could do with the same coding more)
Coming from Keras, I wanted a small book to learn pytorch. This sort of fits the bill, there are nuggets of pretty good insight in there. Unfortunately there are a ton of bad mistakes in there also. None of the code has been checked and there are references to paragraphs that have been taken out. It feels rushed with no quality checking done before publication.
The book offers a fast-paced overview of deep learning techniques but is marred by numerous typos and code errors. Some sections are overly abstract, making the material harder to follow. Overall, it needs improvement to be a reliable learning resource. 2.5 stars.
I previously used TensorFlow and keras and I have decided to learn PyTorch too. It is a good book for beginners with some backgrounds regarding neural networks. Only problem is that the book repo need to be updated because some of the scripts are not working and out of dated.
The book is decent with regards to Pytorch for creating deep learning models. However, sufficient content is not available for deploying the applications, as the title suggests.