Jump to ratings and reviews
Rate this book

Ensemble Methods

Rate this book
An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity and bias-variance decompositions, and recent progress in information theoretic diversity. Moving on to more advanced topics, the author explains how to achieve better performance through ensemble pruning and how to generate better clustering results by combining multiple clusterings. In addition, he describes developments of ensemble methods in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement.

236 pages, Hardcover

First published January 1, 2012

2 people are currently reading
53 people want to read

About the author

Zhi-Hua Zhou

42 books2 followers

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
5 (26%)
4 stars
10 (52%)
3 stars
3 (15%)
2 stars
1 (5%)
1 star
0 (0%)
Displaying 1 of 1 review
Displaying 1 of 1 review

Can't find what you're looking for?

Get help and learn more about the design.