This comprehensive, applied approach to multilevel analysis is distinguished by its wide range of applications relevant to the behavioral, educational, organizational, and social sciences. Univariate and multivariate models are used to understand how to design studies and analyze data. Readers are encouraged to consider what they are investigating, their data, and the strengths and limitations of each technique before selecting their approach. Numerous examples and exercises allow readers to test their understanding of the techniques. Input programs from HLM and Mplus demonstrate how to set up and run the models. A latent variable conceptual framework is emphasized to show the commonality of the approaches and to make each technique more accessible. The first section is devoted to conceptual issues underlying multilevel modeling, while the second section develops several types of multilevel analyses including univariate regression, structural equation, growth curve and latent change, and latent variable mixture modeling. The new edition Ideal for introductory graduate level courses on multilevel and/or latent variable modeling, this book is intended for students and researchers in psychology, business, education, health, and sociology interested in understanding multilevel modeling. Prerequisites include an introduction to data analysis and univariate statistics.
This is the second edition, and it is much-improved from the first. The step-by-step instructions in SPSS are very helpful and just enough conceptual material is covered for the analyses to make sense to a multilevel novice. I highly recommend this for graduate level multivariate stats courses.
I am a little bit disappointed with the book because it does not present the results as generated by the Mplus output, being difficult to follow the author's interpretation of the results.