The opportunity that tissue engineering provides for medicine is extraordinary. In the United States alone, over half-a-trillion dollars are spent each year to care for patients who suffer from tissue loss or dysfunction. Although numerous books and reviews have been written on tissue engineering, none has been as comprehensive in its defining of the field. Principles of Tissue Engineering combines in one volume the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation of applications of tissue engineering to diseases affecting specific organ systems. The first edition of the book, published in 1997, is the definite reference in the field. Since that time, however, the discipline has grown tremendously, and few experts would have been able to predict the explosion in our knowledge of gene expression, cell growth and differentiation, the variety of stem cells, new polymers and materials that are now available, or even the successful introduction of the first tissue-engineered products into the marketplace. There was a need for a new edition, and this need has been met with a product that defines and captures the sense of excitement, understanding and anticipation that has followed from the evolution of this fascinating and important field. Key Features * Provides vast, detailed analysis of research on all of the major systems of the human body, e.g., skin, muscle, cardiovascular, hematopoietic, and nerves * Essential to anyone working in the field * Educates and directs both the novice and advanced researcher * Provides vast, detailed analysis of research with all of the major systems of the human body, e.g. skin, muscle, cardiovascular, hematopoietic, and nerves * Has new chapters written by leaders in the latest areas of research, such as fetal tissue engineering and the universal cell * Considered the definitive reference in the field * List of contributors reads like a "who's who" of tissue engineering, and includes Robert Langer, Joseph Vacanti, Charles Vacanti, Robert Nerem, A. Hari Reddi, Gail Naughton, George Whitesides, Doug Lauffenburger, and Eugene Bell, among others
ROBERT LANZA, MD, is one of the most respected scientists in the world. He is head of Astellas Global Regenerative Medicine, Chief Scientific Officer of the Astellas Institute for Regenerative Medicine, and adjunct professor at Wake Forest School of Medicine. TIME magazine recognized him as one of the “100 Most Influential People in the World,” and Prospect magazine named him one of the Top 50 “World Thinkers” in 2015. He is credited with several hundred publications and inventions, and more than 30 scientific books, including the definitive references in the field of stem cells and regenerative medicine. A former Fulbright Scholar, he studied with polio pioneer Jonas Salk and Nobel Laureates Gerald Edelman and Rodney Porter. Lanza was part of the team that cloned the world’s first human embryo, as well as the first to successfully generate stem cells from adults using somatic-cell nuclear transfer (therapeutic cloning).