Jump to ratings and reviews
Rate this book

Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval

Rate this book
Consider a space $M$, a map $\to M$, and a function $ \to {\mathbb C}$. The formal power series $\zeta (z) = \exp \sum ^\infty _{m=1} \frac {z^m}{m} \sum _{x \in \mathrm {Fix}\,f^m} \prod ^{m-1}_{k=0} g (f^kx)$ yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval $[0,1]$. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of $(M,f,g)$.

62 pages, Paperback

First published January 1, 1994

4 people want to read

About the author

David Ruelle

28 books15 followers
David Pierre Ruelle is a Belgian mathematical physicist, naturalized French. He has worked on statistical physics and dynamical systems. With Floris Takens, Ruelle coined the term strange attractor, and developed a new theory of turbulence.

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
1 (50%)
1 star
1 (50%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.