This paper describes several results of parallel and distributed computing using a large scale production flow solver program. A coarse grained parallelization based on clustering of discretization grids combined with partitioning of large grids for load balancing is presented. An assessment is given of its performance on distributed and distributed-shared memory platforms using large scale scientific problems. An experiment with this solver, adapted to a Wide Area Network execution environment is presented. We also give a comparative performance assessment of computation and communication times on both the tightly and loosely-coupled machines.