Jump to ratings and reviews
Rate this book

3D Deep Learning with Python: Design and develop your computer vision model with 3D data using PyTorch3D and more

Rate this book
Visualize and build deep learning models with 3D data using PyTorch3D and other Python frameworks to conquer real-world application challenges with ease

Key FeaturesUnderstand 3D data processing with rendering, PyTorch optimization, and heterogeneous batchingImplement differentiable rendering concepts with practical examplesDiscover how you can ease your work with the latest 3D deep learning techniques using PyTorch3DBook DescriptionWith this hands-on guide to 3D deep learning, developers working with 3D computer vision will be able to put their knowledge to work and get up and running in no time.

Complete with step-by-step explanations of essential concepts and practical examples, this book lets you explore and gain a thorough understanding of state-of-the-art 3D deep learning. You’ll see how to use PyTorch3D for basic 3D mesh and point cloud data processing, including loading and saving ply and obj files, projecting 3D points into camera coordination using perspective camera models or orthographic camera models, rendering point clouds and meshes to images, and much more. As you implement some of the latest 3D deep learning algorithms, such as differential rendering, Nerf, synsin, and mesh RCNN, you’ll realize how coding for these deep learning models becomes easier using the PyTorch3D library.

By the end of this deep learning book, you’ll be ready to implement your own 3D deep learning models confidently.

What you will learnDevelop 3D computer vision models for interacting with the environmentGet to grips with 3D data handling with point clouds, meshes, ply, and obj file formatWork with 3D geometry, camera models, and coordination and convert between themUnderstand concepts of rendering, shading, and more with easeImplement differential rendering for many 3D deep learning modelsAdvanced state-of-the-art 3D deep learning models like Nerf, synsin, mesh RCNNWho this book is forThis book is for beginner to intermediate-level machine learning practitioners, data scientists, ML engineers, and DL engineers who are looking to become well-versed with computer vision techniques using 3D data.

Table of Contents3D data file formats - ply and obj, 3D coordination systems, camera modelsBasic rendering concepts, basic PyTorch optimization, heterogeneous batchingFitting using deformable mesh modelsDifferentiable rendering basic conceptsDifferentiable volume renderingNeRF - Neural Radiance FieldsGIRAFFEHuman body 3D fitting using SMPL modelsSynsin - end-to-end view synthesis from a single imageMesh RCNN

236 pages, Kindle Edition

Published October 31, 2022

5 people are currently reading
3 people want to read

About the author

Xudong Ma

1 book

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
1 (50%)
4 stars
1 (50%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.