On The Determination Of Elliptic Orbits From Three Complete Observations is a scientific book written by Josiah Willard Gibbs and published in 1889. The book focuses on the mathematical principles and methods used to determine the elliptical orbits of celestial bodies based on three complete observations. Gibbs, who was a renowned American physicist and mathematician, provides a detailed analysis of the mathematical equations and formulas used in the determination of elliptic orbits. He also discusses the practical applications of these calculations in the field of astronomy and space exploration. This book is considered a seminal work in the field of celestial mechanics and is an important contribution to the scientific literature of the late 19th century. It is a valuable resource for students, researchers, and professionals in the fields of physics, mathematics, and astronomy.This scarce antiquarian book is a facsimile reprint of the old original and may contain some imperfections such as library marks and notations. Because we believe this work is culturally important, we have made it available as part of our commitment for protecting, preserving, and promoting the world's literature in affordable, high quality, modern editions, that are true to their original work.
Josiah Willard Gibbs (February 11, 1839 – April 28, 1903) was an American scientist who made important theoretical contributions to physics, chemistry, and mathematics. His work on the applications of thermodynamics was instrumental in transforming physical chemistry into a rigorous deductive science. Together with James Clerk Maxwell and Ludwig Boltzmann, he created statistical mechanics (a term that he coined), explaining the laws of thermodynamics as consequences of the statistical properties of large ensembles of particles. Gibbs also worked on the application of Maxwell's equations to problems in physical optics. As a mathematician, he invented modern vector calculus (independently of the British scientist Oliver Heaviside, who carried out similar work during the same period).
In 1863, Yale awarded Gibbs the first American doctorate in engineering. After a three-year sojourn in Europe, Gibbs spent the rest of his career at Yale, where he was professor of mathematical physics from 1871 until his death. Working in relative isolation, he became the earliest theoretical scientist in the United States to earn an international reputation and was praised by Albert Einstein as "the greatest mind in American history". In 1901 Gibbs received what was then considered the highest honor awarded by the international scientific community, the Copley Medal of the Royal Society of London, "for his contributions to mathematical physics".
Commentators and biographers have remarked on the contrast between Gibbs's quiet, solitary life in turn of the century New England and the great international impact of his ideas. Though his work was almost entirely theoretical, the practical value of Gibbs's contributions became evident with the development of industrial chemistry during the first half of the 20th century. According to Robert Andrews Millikan, in pure science Gibbs "did for statistical mechanics and for thermodynamics what Laplace did for celestial mechanics and Maxwell did for electrodynamics, namely, made his field a well-nigh finished theoretical structure."