A state-of-the-art survey of both classical and quantum lattice gas models, this two-volume work will cover the rigorous mathematical studies of such models as the Ising and Heisenberg, an area in which scientists have made enormous strides during the past twenty-five years. This first volume addresses, among many topics, the mathematical background on convexity and Choquet theory, and presents an exhaustive study of the pressure including the Onsager solution of the two-dimensional Ising model, a study of the general theory of states in classical and quantum spin systems, and a study of high and low temperature expansions. The second volume will deal with the Peierls construction, infrared bounds, Lee-Yang theorems, and correlation inequality.
This comprehensive work will be a useful reference not only to scientists working in mathematical statistical mechanics but also to those in related disciplines such as probability theory, chemical physics, and quantum field theory. It can also serve as a textbook for advanced graduate students.
Originally published in 1993.
The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Barry Simon is an eminent American mathematical physicist and the IBM Professor of Mathematics and Theoretical Physics (Emeritus) at Caltech, known for his prolific contributions in spectral theory, functional analysis, and nonrelativistic quantum mechanics (particularly Schrödinger operators), including the connections to atomic and molecular physics. He has authored more than 300 publications on mathematics and physics.
More particularly, his work has focused on broad areas of mathematical physics and analysis covering: quantum field theory, statistical mechanics, Brownian motion, random matrix theory, general nonrelativistic quantum mechanics (including N-body systems and resonances), nonrelativistic quantum mechanics in electric and magnetic fields, the semi-classical limit, the singular continuous spectrum, random and ergodic Schrödinger operators, orthogonal polynomials, and non-selfadjoint spectral theory.
Dr. Simon is a fellow of the American Mathematical Society (2012), a winner of the Henri Poincaré Prize (2012), a winner of the János Bolyai International Mathematical Prize (2015), a winner of the 2016 Steele Prize for Lifetime Achievement, and a winner of the Dannie Heineman Prize for Mathematical Physics (2018).