Jump to ratings and reviews
Rate this book

Cambridge Tracts in Mathematics #128

An Introduction to Maximum Principles and Symmetry in Elliptic Problems

Rate this book
This book presents the basic theory of the symmetry of solutions to second-order elliptic partial differential equations by means of the maximum principle. It proceeds from elementary facts about the linear case to recent results about positive solutions of nonlinear elliptic equations. Gidas, Ni and Nirenberg, building on the work of Alexandrov and Serrin, have shown that the shape of the set on which such elliptic equations are solved has a strong effect on the form of positive solutions. In particular, if the equation and its boundary condition allow spherically symmetric solutions, then, remarkably, all positive solutions are spherically symmetric. These recent and important results are presented with minimal prerequisites, in a style suited to graduate students. Two long appendices give a leisurely account of basic facts about the Laplace and Poisson equations, and there is an abundance of exercises, with detailed hints, some of which contain new results.

352 pages, Hardcover

First published February 25, 2000

1 person want to read

About the author

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.