Jump to ratings and reviews
Rate this book

Topics in the Calculus of Variations

Rate this book
This book illustrates two basic principles in the calculus of variations which are the question of existence of solutions and closely related the problem of regularity of minimizers. Chapter one studies variational problems for nonquadratic energy functionals defined on suitable classes of vectorvalued functions where also nonlinear constraints are incorporated. Problems of this type arise for mappings between Riemannian manifolds or in nonlinear elasticity. Using direct methods the existence of generalized minimizers is rather easy to establish and it is then shown that regularity holds up to a set of small measure. Chapter two contains a short introduction into Geometric Measure Theory which serves as a basis for developing an existence theory for (generalized) manifolds with prescribed mean curvature form and boundary in arbitrary dimensions and codimensions. One major aspect of the book is to concentrate on techniques and to present methods which turn out to be useful for applications in regularity theorems as well as for existence problems.

First published January 1, 1994

About the author

Martin Fuchs

52 books

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
0 (0%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.