Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Jason Brownlee, Ph.D. trained and worked as a research scientist and software engineer for many years (e.g. enterprise, R&D, and scientific computing), and is known online for his work on Computational Intelligence (e.g. Clever Algorithms), Machine Learning and Deep Learning (e.g. Machine Learning Mastery, sold in 2021) and Python Concurrency (e.g. Super Fast Python).