Jump to ratings and reviews
Rate this book
Rate this book
Event history analysis has been a useful method in the social sciences for studying the processes of social change. However, a main difficulty in using this technique is to observe all relevant explanatory variables without missing any variables. This book presents a general approach to missing data problems in event history analysis which is based on the similarities between log-linear models, hazard models and event history models. It begins with a discussion of log-rate models, modified path models and methods for obtaining maximum likelihood estimates of the parameters of log-linear models. The author then shows how to incorporate variables with missing information in log-linear models - including latent class models, m

360 pages, Hardcover

First published May 13, 1997

2 people want to read

About the author

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
2 (100%)
3 stars
0 (0%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.