Jump to ratings and reviews
Rate this book

Unbounded Linear Operators: Theory and Applications

Rate this book
This volume presents a systematic treatment of the theory of unbounded linear operators in normed linear spaces with applications to differential equations. Largely self-contained, it is suitable for advanced undergraduates and graduate students, and it only requires a familiarity with metric spaces and real variable theory.
After introducing the elementary theory of normed linear spaces—particularly Hilbert space, which is used throughout the book—the author develops the basic theory of unbounded linear operators with normed linear spaces assumed complete, employing operators assumed closed only when needed. Other topics include strictly singular operators; operators with closed range; perturbation theory, including some of the main theorems that are later applied to ordinary differential operators; and the Dirichlet operator, in which the author outlines the interplay between functional analysis and "hard" classical analysis in the study of elliptic partial differential equations.
In addition to its readable style, this book's appeal includes numerous examples and motivations for certain definitions and proofs. Moreover, it employs simple notation, eliminating the need to refer to a list of symbols.

208 pages, Paperback

Published August 4, 2006

12 people want to read

About the author

Ratings & Reviews

What do you think?
Rate this book

Friends & Following

Create a free account to discover what your friends think of this book!

Community Reviews

5 stars
0 (0%)
4 stars
1 (33%)
3 stars
2 (66%)
2 stars
0 (0%)
1 star
0 (0%)
No one has reviewed this book yet.

Can't find what you're looking for?

Get help and learn more about the design.