This text on probability and stochastic processes begins at an elementary level and progresses quickly to cover more advanced topics. It has been revised, with new chapters, more exercises at the ends of sections, and new problems at the ends of chapters.
Our book for MATH 3220 -- Honors Probability and Statistics. While it's just as poorly written as any other undergraduate stochastics book, it's at least got very thorough coverage and a basis in rigorous measure theory. If you're not using measure theory, you're not doing probability, and should slowly back away from the model until you've integrated the Lebesgue into your gestalt.
a good book which covers maths of probability and random variable.
I borrowed from the library because I was doing MCMC lab. Unfortunately, it turned out I didn't manage to do a good job because I got too much to (re)learn in two weeks and I was in bad mood. So today's challenge was to finish this book on the train - nice/shamful to see how little I know and how much I have to learn!
Very good book but definetly not for beginners. If you want to enjoy reading and studying this one, first consider learning from more introductory books in probability and statistics.
Far too difficult as a standard course in undergraduate probability. Some of the exercises have an indulgent/non-instructive feel to them; for example, the very first exercise in section 4.14 is to find \int^{\infty}_{-\infty} e^{-x^2} dx. No hint provided. Seriously? This exercise has no instructive purpose other than to force you to look the answer up if you don't already know the trick.
Instead the breadth of topics and the extensive number of exercises make this book worthwhile for grad students and advanced undergrads. 4 stars (0.5 stars if used as first course in undergrad probability).
The content is good, but dense, particularly if it's your first introduction to probability. Should definitely get the companion book containing all the exercises and their solutions.